如圖,正方形所在平面與平面四邊形所在平面互相垂直,△是等腰直角三角形,

(1)線段的中點為,線段的中點為,求證:;
(2)求直線與平面所成角的正切值.

(1)根據(jù)面面平行的性質(zhì)定理,//面,可知結(jié)論。(2)

解析試題分析:(1)取的中點為,連,,則,
//面,            ………………………5分
(2)先證出,                         ………………………8分
為直線與平面所成角,            ………………………11分
                             ………………………14分
考點:線面平行,線面角
點評:對于平行的證明,主要是根據(jù)線面位置關(guān)系中平行的判定定理來得到,那么對于線面角的求解,關(guān)鍵是作出平面的垂線來證明,考查了分析問題的能力。中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)在如圖的多面體中,⊥平面,,,,的中點.

(Ⅰ) 求證:平面;
(Ⅱ) 求證:;
(Ⅲ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是棱長為1的正方體,四棱錐中,平面,。

(Ⅰ)求證:
(Ⅱ)求直線與平面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖的直三棱柱中,,點的中點.

(1)求證:∥平面;
(2)求異面直線所成的角的余弦值;
(3)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,⊙O的直徑AB=4,點C、D為⊙O上兩點,且∠CA B=45o,∠DAB=60o,F(xiàn)為的中點.沿直徑AB折起,使兩個半圓所在平面互相垂直(如圖).

(1)求證:OF//平面ACD;
(2)求二面角C- AD-B的余弦值;
(3)在上是否存在點G,使得FG∥平面ACD?若存在,試指出點G的位置,并求直線AG與平面ACD所成角的正弦值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,棱柱ABCD—的底面為菱 形 ,AC∩BD=O側(cè)棱BD,F的中點.

(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)如圖,在正方體ABCDA1B1C1D1中,E、F為棱ADAB的中點.

(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖,在三棱錐P-ABC中,底面△ABC為等邊三角形,∠APC=90°,PB=AC=2PA=4,O為AC的中點。

(Ⅰ)求證:BO⊥PA;
(Ⅱ)判斷在線段AC上是否存在點Q(與點O不重合),使得△PQB為直角三角形?若存在,試找出一個點Q,并求的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,在四棱錐中,底面是矩形,平面,.于點,中點.

(1)用空間向量證明:AM⊥MC,平面⊥平面;
(2)求直線與平面所成的角的正弦值;
(3)求點到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案