【題目】(本小題滿分12分)如圖,曲線由上半橢圓和部分拋物線 連接而成, 的公共點為,其中的離心率為.
(Ⅰ)求的值;
(Ⅱ)過點的直線與分別交于(均異于點),若,求直線的方程.
【答案】(Ⅰ) ; (Ⅱ).
【解析】試題分析:(1)由上半橢圓和部分拋物公共點為,得,設的半焦距為,由及,解得;
(2)由(1)知,上半橢圓的方程為, ,易知,直線與軸不重合也不垂直,故可設其方程為,并代入的方程中,整理得: ,
由韋達定理得,又,得,從而求得,繼而得點的坐標為,同理,由得點的坐標為,最后由,解得,經(jīng)檢驗符合題意,故直線的方程為.
試題解析:(1)在方程中,令,得
在方程中,令,得
所以
設的半焦距為,由及,解得
所以,
(2)由(1)知,上半橢圓的方程為,
易知,直線與軸不重合也不垂直,設其方程為
代入的方程中,整理得:
(*)
設點的坐標
由韋達定理得
又,得,從而求得
所以點的坐標為
同理,由得點的坐標為
,
,即
, ,解得
經(jīng)檢驗, 符合題意,
故直線的方程為
科目:高中數(shù)學 來源: 題型:
【題目】過點P(4,﹣1)且與直線3x﹣4y+6=0垂直的直線方程是( )
A.4x+3y﹣13=0
B.4x﹣3y﹣19=0
C.3x﹣4y﹣16=0
D.3x+4y﹣8=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,正三角形所在平面與菱形所在的平面垂直, 平面,且.
(1)判斷直線平面的位置關系,并說明理由;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+ax(x∈R).
(1)證明:當 a>2時,f(x)在 R上是增函數(shù);
(2)若函數(shù)f(x)存在兩個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,集合A={x|x≤1,或x≥3},集合B={x|k<x<2k+1},且(UA)∩B=,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=(2x﹣3)n展開式的二項式系數(shù)和為512,且(2x﹣3)n=a0+a1(x﹣1)+a2(x﹣1)2+…+an(x﹣1)n
(1)求a2的值;
(2)求a1+a2+a3+…+an的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com