精英家教網 > 高中數學 > 題目詳情

(本題滿分12分)成都市為“市中學生知識競賽”進行選拔性測試,且規(guī)定:成績大于或等于90分的有參賽資格,90分以下(不包括90分)的則被淘汰。若現有500人參加測試,學生成績的頻率分布直方圖如下:

(I)求獲得參賽資格的人數;
(II)根據頻率直方圖,估算這500名學生測試的平均成績;
(III)若知識競賽分初賽和復賽,在初賽中每人最多有3次選題答題的機會,累計答對2題或答錯2題即終止,答對2題者方可參加復賽,已知參賽者甲答對每一個問題的概率都相同,并且相互之間沒有影響,已知他連續(xù)兩次答錯的概率為,求甲通過初賽的概率.

(I) 125;(II)78.48;(III) .

解析試題分析:(I)將頻率分布直方圖中90~150的小矩形的面積相加,便得獲得參賽資格的人數的頻率.頻率乘以測試總人數500,便得獲得參賽資格的人數.
(II)在頻率分布直方圖中,平均值等于每小組的頻率乘以每小組中點的值的和.
(III)已知連續(xù)兩次答錯的概率為,由此可得答對每一道題的概率.甲通過初賽包括以下兩種情況:連續(xù)答對2個或前2題中恰好答對1個且第43個題答對,根據獨立事件及互斥事件的概率公式可得甲通過初賽的概率.
試題解析:(I)獲得參賽資格的人數    2分
(II)平均成績:

        5分
(III)設甲答對每一道題的概率為.P

甲通過初賽的概率為:.      12分
考點:1、頻率分布直方圖及樣本數據的平均數;2、獨立事件與互斥事件的概率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

交通指數是交通擁堵指數的簡稱,是綜合反映道路網暢通或擁堵的概念,記交通指數為T.其范圍為[0,10],分別有五個級別:T∈[0,2)暢通;T∈[2,4)基本暢通; T∈[4,6)輕度擁堵; T∈[6,
8)中度擁堵;T∈[8,10]嚴重擁堵,晚高峰時段,從某市交通指揮中心選取了市區(qū)20個交通路段,依據其交通指數數據繪制直方圖如圖所示.

(1)這20個路段輕度擁堵、中度擁堵的路段各有多少個?
(2)從這20個路段中隨機抽出的3個路段,用X表示抽取的中度擁堵的路段的個數,求X的分布列及期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某學校900名學生在一次百米測試中,成績全部介于秒與秒之間,抽取其中50個樣本,將測試結果按如下方式分成五組:第一組,第二組,…,第五組,下圖是按上述分組方法得到的頻率分布直方圖.

(1)若成績小于14秒認為優(yōu)秀,求該樣本在這次百米測試中成績優(yōu)秀的人數;
(2)請估計學校900名學生中,成績屬于第四組的人數;
(3)請根據頻率分布直方圖,求樣本數據的眾數和中位數(保留兩位小數).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2013年4月14日,CCTV財經頻道報道了某地建筑市場存在違規(guī)使用未經淡化海砂的現象.為了研究使用淡化海砂與混凝土耐久性是否達標有關,某大學實驗室隨機抽取了60個樣本,得到了相關數據如下表:

 
混凝土耐久性達標
混凝土耐久性不達標
總計
使用淡化海砂
25

30
使用未經淡化海砂

15
30
總計
40
20
60
(Ⅰ)根據表中數據,求出,的值,利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為使用淡化海砂與混凝土耐久性是否達標有關?
(Ⅱ)若用分層抽樣的方法在使用淡化海砂的樣本中抽取了6個,現從這6個樣本中任取2個,則取出的2個樣本混凝土耐久性都達標的概率是多少?
參考數據:

0.10
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828
參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

隨著工業(yè)化的發(fā)展,環(huán)境污染愈來愈嚴重.某市環(huán)保部門隨機抽取60名市民對本市空氣質量滿意度打分,把數據分、六段后得到如下頻率分布表:

分組
頻數
頻率


















合計


(1)求表中數據、、的值;
(2)用分層抽樣的方法在分數的市民中抽取容量為的樣本,將該樣本看成一個總體,從中任取人在分數段的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在每年的春節(jié)后,某市政府都會發(fā)動公務員參與到植樹活動中去.為保證樹苗的質量,該市林管部門在植樹前,都會在植樹前對樹苗進行檢測.現從甲乙兩種樹苗中各抽測了10株樹苗的高度,量出樹苗的高度如下(單位:厘米):
甲:
乙:
(1)根據抽測結果,完成答題卷中的莖葉圖,并根據你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論;

(2)設抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入按程序框圖進行的運算,問輸出的大小為多少?并說明的統(tǒng)計學意義.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某種產品的廣告費支出與銷售額(單位:萬元)之間有如下對應數據:


2
4
5
6
8

30
40
60
50
70
(1)求回歸直線方程;
(2)試預測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數據中任意抽取兩組,求至少有一組數據其預測值與實際值之差的絕對值不超過5的概率.
(參考數據:    
參考公式:線性回歸方程系數:,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

了解某市今年初二年級男生的身體素質狀況,從該市初二年級男生中抽取了一部分學生進行“擲實心球”的項目測試.成績低于6米為不合格,成績在6至8米(含6米不含8米)的為及格,成績在8米至12米(含8米和12米,假定該市初二學生擲實心球均不超過12米)為優(yōu)秀.把獲得的所有數據,分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學生的成績在10米到12米之間.

(Ⅰ)求實數的值及參加“擲實心球”項目測試的人數;
(Ⅱ)根據此次測試成績的結果,試估計從該市初二年級男生中任意選取一人,“擲實心球”成績?yōu)閮?yōu)秀
的概率;
(Ⅲ)若從此次測試成績最好和最差的兩組男生中隨機抽取2名學生再進行其它項目的測試,求所抽取的2名學生來自不同組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

以下莖葉圖記錄了甲、乙兩組各四名同學的植樹棵數.乙組記錄中有一個數據模糊,無法確認,在圖中以X表示.

(1)如果X=8,求乙組同學植樹棵數的平均數和方差;
(2)如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數為19的概率.
(注:方差s2[(x1)2+(x2)2+…+(xn)2]),其中為x1,x2,…,xn的平均數)

查看答案和解析>>

同步練習冊答案