年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
在四棱錐中,平面,底面為矩形,.
(I)當(dāng)時(shí),求證:;
(II)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知,直線與函數(shù)的圖像都相切,且與函數(shù)的圖像的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線的方程及的值;
(2)若(其中是的導(dǎo)函數(shù)),求函數(shù)的最大值;
(3)當(dāng)時(shí),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆浙江省溫州市高三下學(xué)期第三次理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)如圖,已知平面平面,與分別是棱長(zhǎng)為1與2的正三角形,//,四邊形為直角梯形,//,,點(diǎn)為的重心,為中點(diǎn),,
(Ⅰ)當(dāng)時(shí),求證://平面
(Ⅱ)若直線與所成角為,試求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省高三第七次月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知梯形中,∥,,
,、分別是上的點(diǎn),∥,,是的中點(diǎn)。沿將梯形翻折,使平面⊥平面 (如圖) .
(Ⅰ)當(dāng)時(shí),求證: ;
(Ⅱ)以為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(Ⅲ)當(dāng)取得最大值時(shí),求鈍二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省臨海市高二第二學(xué)期第一次月考數(shù)學(xué)試卷 題型:解答題
(6分) 當(dāng)時(shí),求證:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com