【題目】某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查.?dāng)?shù)據(jù)如下表:

認(rèn)為作業(yè)多

認(rèn)為作業(yè)不多

合計(jì)

喜歡玩游戲

18

9

不喜歡玩游戲

8

15

合計(jì)

1請(qǐng)完善上表中所缺的有關(guān)數(shù)據(jù);

2試通過計(jì)算說明在犯錯(cuò)誤的概率不超過多少的前提下認(rèn)為喜歡玩游戲與作業(yè)量的多少有關(guān)系?

附:

PK2K0

0.05

0.025

0.010

0.005

0.001

K0

3.841

5.024

6.635

7.879

10.828

【答案】1列聯(lián)表見解析;2在犯錯(cuò)誤的概率不超過的前提下認(rèn)為喜歡玩游戲與作業(yè)量的多少有關(guān)系.

【解析】

試題分析:1根據(jù)各行和各列數(shù)據(jù)可得各合計(jì)值;2根據(jù)給出的公式求出其值,與臨界值表比較易得結(jié)論.

試題解析:1

認(rèn)為作業(yè)多

認(rèn)為作業(yè)不多

合計(jì)

喜歡玩游戲

18

9

27

不喜歡玩游戲

8

15

23

合計(jì)

26

24

50

2將表中的數(shù)據(jù)代入公式得到的觀測(cè)值5.059>5.024,

查表知PK25.0240.025,即說明在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為喜歡玩游戲與作業(yè)量的多少有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:方程有兩個(gè)不等的負(fù)根; :方程無實(shí)根.為真,為假,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將編號(hào)為1,23,45的五個(gè)球放入編號(hào)為12,3,45的五個(gè)盒子里,每個(gè)盒子內(nèi)放一個(gè)球,若恰好有三個(gè)球的編號(hào)與盒子編號(hào)相同,則不同投放方法的種數(shù)為( )

A.6 B.10

C.20 D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)有關(guān)算法的說法中,正確的是__________.(要求只填寫序號(hào))

(1)算法的各個(gè)步驟是可逆的; (2)算法執(zhí)行后一定得到確定的結(jié)果;

(3)解決某類問題的算法不是唯一的; (4)算法一定在有限步內(nèi)結(jié)束.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人被稱為微商.為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

1根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?

2現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈(zèng)送營養(yǎng)面膜1份,求所抽取5人中“微信控”和“非微信控”的人數(shù);

32中抽取的5人中再隨機(jī)抽取3人贈(zèng)送200元的護(hù)膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望.

參考公式:,其中n=a+b+c+d.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】城市公交車的數(shù)量若太多則容易造成資源的浪費(fèi);若太少又難以滿足乘客需求.某市公交公司在某站臺(tái)的60名候車乘客中隨機(jī)抽取15人,將他們的候車時(shí)間作為樣本分成5組,如下表所示單位:分鐘

組別

候車時(shí)間

人數(shù)

2

6

4

2

1

1估計(jì)這60名乘客中候車時(shí)間少于10分鐘的人數(shù);

2若從上表第三、四組的6人中任選2人作進(jìn)一步的調(diào)查,求抽到的兩人恰好來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-1:幾何證明選講

如圖,圓O的直徑AB=10,P是AB延長線上一點(diǎn),BP=2,割線PCD交圓O于點(diǎn)C,D,過點(diǎn)P作AP的垂線,交直線AC于點(diǎn)E,交直線AD于點(diǎn)F.

1當(dāng)時(shí),求的度數(shù);

2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組,為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2月11日至2月16日的白天平均氣溫x()與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):

日期

2月11日

2月12日

2月13日

2月14日

2月15日

2月16日

平均氣溫x(

10

11

13

12

8

6

飲料銷量y(杯)

22

25

29

26

16

12

該小組的研究方案:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

)求選取的2組數(shù)據(jù)恰好是相鄰兩天的概率;

)若選取的是11日和16日的兩組數(shù)據(jù),請(qǐng)根據(jù)12日至15日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程x+,并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選的檢驗(yàn)數(shù)據(jù)的誤差均不超過2杯,則認(rèn)為該方程是理想的)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為等腰梯形,ABCD,AB4,BCCD2,AA12EE1分別是棱ADAA1的中點(diǎn)

1設(shè)F是棱AB的中點(diǎn),證明:直線EE1平面FCC1

2證明:平面D1AC平面BB1C1C;

3求點(diǎn)D到平面D1AC的距離

查看答案和解析>>

同步練習(xí)冊(cè)答案