精英家教網 > 高中數學 > 題目詳情

已知平面直角坐標系,以為極點,軸的非負半軸為極軸建立極坐標系,,曲線的參數方程為.點是曲線上兩點,點的極坐標分別為.
(1)寫出曲線的普通方程和極坐標方程;
(2)求的值.

(1);(2)4.

解析試題分析:(1)利用消參,得到曲線的普通方程,再利用,,轉化為極坐標方程.
(2)方法一:,可知,為直徑,
方法二:利用極坐標與直角坐標的轉化關系,求出的直角坐標,利用兩點間距離公式,求出.此題屬于基礎題型.尤其是第二問的方法的旋轉.
試題解析:.(1)參數方程普通方程             3分
普通方程                      6分
方法1:可知,為直徑,
方法2直角坐標兩點間距離               10分
考點:參數方程與極坐標方程

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為(1,-5),點M的極坐標為(4,).若直線l過點P,且傾斜角為,圓C以M為圓心, 4為半徑.
(1)求直線l的參數方程和圓C的極坐標方程;
(2)試判定直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在極坐標系中,求圓ρ=2cosθ的垂直于極軸的兩條切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在極坐標系中,已知圓C經過點P,圓心為直線ρsin=-與極軸的交點,求圓C的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,已知直線的參數方程是(為參數);以為極點,軸正半軸為極軸的極坐標系中,圓的極坐標方程為.
(1)寫出直線的普通方程與圓的直角坐標方程;
(2)由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,圓的參數方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.求:
(1)圓的直角坐標方程;
(2)圓的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直角坐標系xoy中,曲線C1的參數方程為(t為參數),P為C1上的動點,Q為線段OP的中點.
(1)求點Q的軌跡C2的方程;
(2)在以O為極點,x軸的正半軸為極軸(兩坐標系取相同的長度單位)的極坐標系中,N為曲線p=2sinθ上的動點,M為C2與x軸的交點,求|MN|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數方程為為參數).
(Ⅰ)寫出直線的普通方程與曲線的直角坐標方程;
(Ⅱ)設曲線經過伸縮變換得到曲線,設為曲線上任一點,求的最小值,并求相應點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xOy中,曲線C1和C2的參數方程分別為(t為參數),求曲線C1和C2的交點坐標.

查看答案和解析>>

同步練習冊答案