【題目】如圖,在四棱錐中, , ,平面平面 為等腰直角三角形,

(1)證明: 為直角三角形;

(2)若四棱錐的體積為,求的面積.

【答案】(1)見解析(2)

【解析】試題分析:(1)先根據(jù)面面垂直性質(zhì)定理得平面,即得,再根據(jù)等腰三角形性質(zhì)得,由線面垂直判定定理得平面,即得,(2)過點(diǎn). 根據(jù)面面垂直性質(zhì)定理得平面,再由體積公式得進(jìn)而可求直角三角形兩直角邊,最后根據(jù)面積公式得面積

試題解析:證明:(1),

,

平面平面,平面平面,

平面,

平面,

在等腰直角三角形, ,

平面

平面,

,

為直角三角形.

(2)過點(diǎn).

平面平面,平面平面,

平面,所以四棱錐為高.

在等腰直角三角形中, ,

,

由(1)可知平面, 又平面,則,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過直線l1:2x﹣y﹣1=0與直線l2:x+2y﹣3=0的交點(diǎn)P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓C:(x﹣a)2+y2=8相交于P,Q兩點(diǎn),且 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x (m∈Z)為偶函數(shù),且在(0,+∞)上為增函數(shù).
(1)求m的值,并確定f(x)的解析式;
(2)若函數(shù)g(x)=loga(f(x)﹣ax+2)在區(qū)間(1,+∞)上恒為正值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了支持生物課程基地研究植物生長(zhǎng),計(jì)劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長(zhǎng)為x(m),三塊種植植物的矩形區(qū)域的總面積為S(m2).

(1)求S關(guān)于x的函數(shù)關(guān)系式;
(2)求S的最大值,及此時(shí)長(zhǎng)X的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= (常數(shù)a∈Z)為偶函數(shù)且在(0,+∞)是減函數(shù),則f(2)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過原點(diǎn)O,與x軸另一交點(diǎn)的橫坐標(biāo)為4,與y軸另一交點(diǎn)的縱坐標(biāo)為2,
(1)求圓C的方程;
(2)已知點(diǎn)B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過兩直線3x+y﹣5=0,2x﹣3y+4=0的交點(diǎn),且在兩坐標(biāo)軸上截距相等的直線方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明家訂了一份報(bào)紙,暑假期間他收集了每天報(bào)紙送達(dá)時(shí)間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.

(1)根據(jù)圖中的數(shù)據(jù)信息,求出眾數(shù)和中位數(shù)(精確到整數(shù)分鐘);

(2)小明的父親上班離家的時(shí)間在上午之間,而送報(bào)人每天在時(shí)刻前后半小時(shí)內(nèi)把報(bào)紙送達(dá)(每個(gè)時(shí)間點(diǎn)送達(dá)的可能性相等),求小明的父親在上班離家前能收到報(bào)紙(稱為事件)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案