已知橢圓C: 的左、右準(zhǔn)線分別與x軸交于M、N兩點(diǎn)。

    (I)若;橢圓C的短軸長為2,求橢圓C的方程;

    (II)如題(21)圖,過坐標(biāo)原點(diǎn)O且互相垂直的兩條直線分別與橢圓相交于點(diǎn)A、B、C、D,求四邊形ABCD面積的最大值。

解:(Ⅰ)……………4分

(Ⅱ)法一:設(shè),

 

……………12分

法二:設(shè),聯(lián)立

.同理設(shè),得.

,顯然,當(dāng)時(shí),取得最大值.

       

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)
x2
a2
+
y2
b2
=1
(a>b>0)如圖,已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,離心率為
3
2
,點(diǎn)A是橢圓上任一點(diǎn),△AF1F2的周長為4+2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)Q(-4,0)任作一動直線l交橢圓C于M,N兩點(diǎn),記
MQ
QN
,若在線段MN上取一點(diǎn)R,使得
MR
=-λ
RN
,則當(dāng)直線l轉(zhuǎn)動時(shí),點(diǎn)R在某一定直線上運(yùn)動,求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:的左、右焦點(diǎn)為F1、F2,離心率為e. 直線與x軸、y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對稱點(diǎn),設(shè)

   (Ⅰ)證明:;

   (Ⅱ)若的周長為6;寫出橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省嘉興市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C:的左、右焦點(diǎn)分別為F1,F(xiàn)2,O為原點(diǎn).
(I)如圖①,點(diǎn)M為橢圓C上的一點(diǎn),N是MF1的中點(diǎn),且NF2丄MF1,求點(diǎn)M到y(tǒng)軸的距離;
(II)如圖②,直線l::y=k+m與橢圓C上相交于P,G兩點(diǎn),若在橢圓C上存在點(diǎn)R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三下學(xué)期第二次聯(lián)考文數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.

(Ⅰ)求橢圓C的方程和離心率e;

(Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線的對稱點(diǎn),動點(diǎn)M滿足. 問是否存在一個定點(diǎn)T,使得動點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

 

(本小題滿分12分)已知橢圓C:的左、右頂點(diǎn)的坐標(biāo)分別為,,離心率。

(Ⅰ)求橢圓C的方程:

(Ⅱ)設(shè)橢圓的兩焦點(diǎn)分別為,,若直線與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上。

 

查看答案和解析>>

同步練習(xí)冊答案