已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.
(Ⅰ)求橢圓C的方程和離心率e;
(Ⅱ)若點(diǎn)P為焦點(diǎn)F1關(guān)于直線的對稱點(diǎn),動點(diǎn)M滿足. 問是否存在一個定點(diǎn)T,使得動點(diǎn)M到定點(diǎn)T的距離為定值?若存在,求出定點(diǎn)T的坐標(biāo)及此定值;若不存在,請說明理由.
(Ⅰ);(Ⅱ)存在一個定點(diǎn)且定值為.
【解析】
試題分析:(Ⅰ)依題意由線段F1F2為直徑的圓與直線相切,根據(jù)點(diǎn)到直線的距離公式得,可得c值,再由△AF1F2為正三角形,得a、b、c間關(guān)系,求出a、b的值,即得橢圓方程及離心率;(Ⅱ)假設(shè)存在一個定點(diǎn)T符合題意,先求出點(diǎn)關(guān)于直線的對稱點(diǎn),由題意得,可知動點(diǎn)M的軌跡,從而得解.
試題解析:解:(Ⅰ)設(shè)焦點(diǎn)為,
以線段為直徑的圓與直線相切,,即c=2, 1分
又為正三角形,, 4分
橢圓C的方程為,離心率為. 6分
(Ⅱ)假設(shè)存在一個定點(diǎn)T符合題意,設(shè)動點(diǎn),由點(diǎn)得
點(diǎn)關(guān)于直線的對稱點(diǎn), 7分
由得,
兩邊平方整理得, 10分
即動點(diǎn)M的軌跡是以點(diǎn)為圓心,長為半徑的圓,
存在一個定點(diǎn)且定值為. 12分
考點(diǎn):1、橢圓方程及性質(zhì);2、點(diǎn)到直線的距離公式;3、點(diǎn)關(guān)于直線的對稱點(diǎn)的求法;4、兩點(diǎn)間距離公式;5、圓的軌跡方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
3 |
MQ |
QN |
MR |
RN |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年浙江省嘉興市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東臨沂高三5月高考模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知橢圓C: 的左、右焦點(diǎn)分別為,離心率為,點(diǎn)A是橢圓上任一點(diǎn),的周長為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)任作一動直線l交橢圓C于兩點(diǎn),記,若在線段上取一點(diǎn)R,使得,則當(dāng)直線l轉(zhuǎn)動時,點(diǎn)R在某一定直線上運(yùn)動,求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)已知橢圓C:的左、右頂點(diǎn)的坐標(biāo)分別為,,離心率。
(Ⅰ)求橢圓C的方程:
(Ⅱ)設(shè)橢圓的兩焦點(diǎn)分別為,,若直線與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com