給出下列四個判斷,(1)若;(2)對判斷“都大于零”的反設(shè)是“不都大于零”;(3)“,使得”的否定是“對”;(4)某產(chǎn)品銷售量(件)與銷售價(jià)格(元/件)負(fù)相關(guān),則其回歸方程,以上判斷正確的是_________。

 

【答案】

①②③

【解析】

試題分析:對于(1)若;根據(jù)平方再作差可以判定成立。

對于(2)對判斷“都大于零”的反設(shè)是“不都大于零”;成立,都的否定是不都。

對于(3)“,使得”的否定是“對”; 成立。

對于(4)某產(chǎn)品銷售量(件)與銷售價(jià)格(元/件)負(fù)相關(guān),則其回歸方程,相關(guān)性只能說明b<0,a的正負(fù)不定,錯誤,故填寫①②③

考點(diǎn):命題的真值

點(diǎn)評:解決的關(guān)鍵是利用線性回歸方程,以及反證法,命題的否定的熟練運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個判斷:
①定義在R上的奇函數(shù)f(x),當(dāng)x>0時f(x)=x2+2,則函數(shù)f(x)的值域?yàn)閧y|y≥2或y≤-2};
②若不等式x3+x2+a<0對一切x∈[0,2]恒成立,則實(shí)數(shù)a的取值范圍是{a|a<-12};
③當(dāng)f(x)=log3x時,對于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
;
④設(shè)g(x)表示不超過t>0的最大整數(shù),如:[2]=2,[1.25]=1,對于給定的n∈N+,定義
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當(dāng)x∈[
3
2
,2)時函數(shù)
C
x
8
的值域是(4,
16
3
]
;
上述判斷中正確的結(jié)論的序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=(x2-2x-3)ex,給出下列四個判斷:
①f(x)<0的解集是{x|-1<x<3};
②f(x)有極小值也有極大值;
③f(x)無最大值,也無最小值;
④f(x)有最大值,無最小值.
其中判斷正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x,x∈P
-x,x∈M
其中P,M為實(shí)數(shù)集R的兩個非空子集,又規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.給出下列四個判斷其中正確的序號為
②④
②④

①若P∩M=∅,則f(P)∩f(M)=∅;   
②若P∩M≠∅,則f(P)∩f(M)≠∅;
③若P∪M=R,則f(P)∪f(M)=R;  
④若P∪M≠R,則f(P)∪f(M)≠R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
13
)x-log2x
,0<a<b<c,f(a)f(b)f(c)<0,實(shí)數(shù)d是函數(shù)f(x)的一個零點(diǎn).給出下列四個判斷:①d<a;②d>b;③d<c;④d>c.其中可能成立的序號是
①②③
①②③
.(把你認(rèn)為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x,x∈P
-x,x∈M
其中P,M為實(shí)數(shù)集R的兩個非空子集,規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.給出下列四個判斷:
①若P∩M=∅,則f(P)∩f(M)=∅;②若P∩M≠∅,則f(P)∩f(M)≠∅;③若P∪M=R,則f(P)∪f(M)=R; ④若P∪M≠R,則f(P)∪f(M)≠R.
其中判斷不正確的有
 

查看答案和解析>>

同步練習(xí)冊答案