(本題14分)已知函數(shù)在處取得極值,且在處的切線的斜率為1。
(Ⅰ)求的值及的單調減區(qū)間;
(Ⅱ)設>0,>0,,求證:。
【解析】
試題分析:解:(Ⅰ)
,∴ ,即,∴
∴ ,又,∴ ,∴
綜上可知
,定義域為>0,
由<0 得 0<<,∴的單調減區(qū)間為……………6分
(Ⅱ)先證
即證
即證:
令 ,∵>0,>0 ,∴ >0,即證
令 則
∴
① 當>,即0<<1時,>0,即>0
在(0,1)上遞增,∴<=0,
② 當<,即>1時,<0,即<0
在(1,+∞)上遞減,∴<=0,
③ 當=,即=1時,==0
綜合①②③知即
即
又
∴
綜上可得 ……………14分
考點:導數(shù),極值,函數(shù)與不等式
點評:對于導數(shù)在研究函數(shù)中的運用,關鍵是利用導數(shù)的符號判定單調性,進而得到極值,和最值, 證明不等式。屬于中檔題。
科目:高中數(shù)學 來源:2014屆湖南省高一12月月考數(shù)學 題型:解答題
(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。
已知函數(shù),
(1)當時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界函數(shù)值,求實數(shù)的取值范圍;
(3)若,求函數(shù)在上的上界T的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆湖南省高一12月月考數(shù)學 題型:解答題
(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。
已知函數(shù),
(1)當時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界函數(shù)值,求實數(shù)的取值范圍;
(3)若,求函數(shù)在上的上界T的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com