【題目】如圖1,在正方形中,是的中點,點在線段上,且.若將 分別沿折起,使兩點重合于點,如圖2.
圖1 圖2
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)設(shè)正方形的邊長為,由,可得,結(jié)合,利用線面垂直的判定定理,即可得到平面.
(2)建立空間直角坐標(biāo)系,過點作,垂足為,求出向量和平面的一個法向量,利用向量的夾角公式,即可求解.
(1)證明:設(shè)正方形的邊長為4,由圖1知,,
, ,
,,即
由題意知,在圖2中,,,平面,平面,且,
平面,平面,.
又平面,平面,且,平面
(2)由(1)知平面,則建立如圖所示空間直角坐標(biāo)系,過點作,垂足為,
在中,, ,從而
,,,
,,.
設(shè)平面的一個法向量為,則,
令,則,,.設(shè)直線與平面所成角為,
則, .直線與平面所成角的正弦值為..
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使函數(shù)成立;
(1)請給出一個的值,使函數(shù)
(2)函數(shù)是否是集合M中的元素?若是,請求出所有組成的集合;若不是,請說明理由;
(3)設(shè)函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知 為橢圓 的左焦點,且橢圓過.
(Ⅰ)求橢圓的方程;
(Ⅱ) 是否存在平行四邊形 ,同時滿足下列兩個條件:
①點在直線上;②點 在橢圓上且直線 的斜率等于1.如果存在,求出點坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)以往的經(jīng)驗,某建筑工程施工期間的降水量(單位:)對工期的影響如下表:
降水量 | ||||
工期延誤天數(shù) | 0 | 1 | 3 | 6 |
根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.
(1)求這天的平均降水量;
(2)根據(jù)降水量的折線圖,分別估計該工程施工延誤天數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡大點頻率分布及支持“生育二胎”人數(shù)如下表:
年齡 | ||||||
頻率 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99%的把握認(rèn)為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某支教隊有8名老師,現(xiàn)欲從中隨機(jī)選出2名老師參加志愿活動,
(1)若規(guī)定選出的至少有一名女老師,則共有18種不同的需安排方案,試求該支教隊男、女老師的人數(shù);
(2)在(1)的條件下,記為選出的2位老師中女老師的人數(shù),寫出的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品要了解年廣告費(單位:萬元)對年利潤(單位:萬元)的影響,對近4年的年廣告費和年利潤數(shù)據(jù)作了初步整理,得到下面的表格:
廣告費 | 2 | 3 | 4 | 5 |
年利潤 | 26 | 39 | 49 | 54 |
(Ⅰ)用廣告費作解釋變量,年利潤作預(yù)報變量,建立關(guān)于的回歸直線方程;
(Ⅱ)根據(jù)(Ⅰ)的結(jié)果預(yù)報廣告費用為6萬元時的年利潤.
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,恒成立,求實數(shù)的取值范圍;
(2)證明:當(dāng)時,函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com