【題目】近幾年電子商務(wù)蓬勃發(fā)展,在2017年的“年貨節(jié)”期間,一網(wǎng)絡(luò)購物平臺推銷了三種商品,某網(wǎng)購者決定搶購這三種商品,假設(shè)該名網(wǎng)購者都參與了三種商品的搶購,搶購成功與否相互獨(dú)立,且不重復(fù)搶購?fù)环N商品,對三種商品的搶購成功的概率分別為 ,已知三件商品都被搶購成功的概率為,至少有一件商品被搶購成功的概率為 .

(1)求的值;

(2)若購物平臺準(zhǔn)備對搶購成功的三件商品進(jìn)行優(yōu)惠減免活動, 商品搶購成功減免百元, 商品搶購成功減免百元, 商品搶購成功減免百元,求該名網(wǎng)購者獲得減免的總金額(單位:百元)的分布列和數(shù)學(xué)期望.

【答案】(1) ;(2) 見解析.

【解析】試題分析:(1)根據(jù)已知所給的兩個(gè)事件的概率列出關(guān)于 的方程組求解;(2)首先可取的數(shù)值為0,2,4,6,8,10,12,舉例:當(dāng)時(shí)表示搶購成功兩種商品,所對應(yīng) 的概率類型為獨(dú)立事件同時(shí)發(fā)生的概率 ,其他類似,列分布列并且求數(shù)學(xué)期望.

試題解析:(1)由題意,得,因?yàn)?/span>,解得.

(2) 由題意,令網(wǎng)購者獲得減免的總金額為隨機(jī)變量(單位:百元),則的值可以為,而;

所以分布列為:

于是有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點(diǎn),且與橢圓在第一象限的交點(diǎn)為,且三點(diǎn)共線,直線交橢圓, 兩點(diǎn),且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:以點(diǎn)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).

(1)求證:△OAB的面積為定值; (2)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:x2+mx+1=0有兩個(gè)不等的負(fù)根;命題q:4x2+4(m﹣2)x+1=0無實(shí)根.若命題p與命題q有且只有一個(gè)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<0,函數(shù)f(x)=acosx+ + ,其中x∈[﹣ , ].
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)g(t);
(2)求函數(shù)f(x)的最大值(可以用a表示);
(3)若對區(qū)間[﹣ , ]內(nèi)的任意x1 , x2 , 總有|f(x1)﹣f(x2)|≤1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量正在海面勻速行駛的某船的速度,在海岸上選取距離1千米的兩個(gè)觀察

點(diǎn)CD,在某天10:00觀察到該船在A處,此時(shí)測得∠ADC=30°,2分鐘后該船行駛至B處,此時(shí)測得∠ACB=60°,∠BCD=45°,∠ADB=60°,

求該船航行的速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0<α<π,tanα=﹣2.
(1)求sin(α+ )的值;
(2)求 的值;
(3)2sin2α﹣sinαcosα+cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,平面平面,分別是的中點(diǎn).

求證:(I)底面

(II)平面平面

查看答案和解析>>

同步練習(xí)冊答案