(本小題滿分12分)如圖,在矩形中,,又⊥平面,
(Ⅰ)若在邊上存在一點(diǎn),使,
的取值范圍;
(Ⅱ)當(dāng)邊上存在唯一點(diǎn),使時(shí),
求二面角的余弦值.
解法1:(Ⅰ)如圖,連,由于PA⊥平面ABCD,則由PQQD,必有
                                    ……2分
設(shè),則,
中,有
中,有.   ……4分
中,有
,即

的取值范圍為.                                      ……6分
(Ⅱ)由(Ⅰ)知,當(dāng)時(shí),邊BC上存在唯一點(diǎn)QQBC邊的中點(diǎn)),使PQQD.                                                  
QQMCDADM,則QMAD
  ∵PA⊥平面ABCD,∴PAQM.∴QM⊥平面PAD
  過MMNPDN,連結(jié)NQ,則QNPD
  ∴∠MNQ是二面角APDQ的平面角.                          ……8分
在等腰直角三角形中,可求得,又,進(jìn)而
……10分

故二面角APDQ的余弦值為.               ……12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于平面、、和直線、、m、n,下列命題中真命題是(   )
A.若,則
B.若,則
C.若,則
D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知一四棱錐的底面是邊長為1的正方形,側(cè)棱底面,且
(1)求證:平面
(2)若點(diǎn)的中點(diǎn),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在棱長為1的正方體上,分別用過共頂點(diǎn)的三條棱中點(diǎn)的平面截該正方體,則截去8個(gè)三棱錐后,剩下的空間幾何體的體積是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面與平面相交,直線,則(  )
A.內(nèi)必存在直線與平行,且存在直線與垂直
B.內(nèi)不一定存在直線與平行,不一定存在直線與垂直
C.內(nèi)不一定存在直線與平行,但必存在直線與垂直
D.內(nèi)必存在直線與平行,不一定存在直線與垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)第一題滿分5分,第二題滿分5分,第三題滿分8分.
如圖,有一公共邊但不共面的兩個(gè)三角形ABC和A1BC被一平面DEE1D1所截,若平面DEE1D1分別交AB,AC,A1B,A1C于點(diǎn)D,E,D1,E1
(1)討論這三條交線ED,CB, E1 D1的關(guān)系。
(2)當(dāng)BC//平面DEE1D1時(shí),求的值;

(3)當(dāng)BC不平行平面DEE1D1時(shí), 的值變化嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知長方體底面為正方形,為線段的中點(diǎn),為線段的中點(diǎn).                               
(Ⅰ)求證:∥平面
(Ⅱ)設(shè)的中點(diǎn),當(dāng)的比值為多少時(shí),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,三棱錐中,平面,,,則直線與平面所成的角是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

同步練習(xí)冊答案