精英家教網 > 高中數學 > 題目詳情
已知是橢圓的兩個焦點,過且與橢圓長軸垂直的直線交橢圓于A、B兩點,若是等腰直角三角形,則這個橢圓的離心率是
A.                        B.           
C.                  D.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓的中心在原點,為橢圓的左焦點, 為橢圓的一個頂點,過點作與垂直的直線軸于點, 且橢圓的長半軸長和短半軸長是關于的方程(其中為半焦距)的兩個根.
(1)求橢圓的離心率;
(2)經過、、三點的圓與直線
相切,試求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的左右焦點分別為F1、F2,點P在橢圓C上,且PF1⊥F1F2, |PF1|=,  |PF2|=.  
(I)求橢圓C的方程;
(II)若直線L過圓的圓心M交橢圓于A、B兩點,且A、B關于點M對稱,求直線L的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)設橢圓的左焦點為,上頂點為,過點垂直的直線分別交橢圓軸正半軸于點,且. ⑴求橢圓的離心率;⑵若過、三點的圓恰好與直線相切,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(16分)在平面直角坐標系中,如圖,已知橢圓的左右頂點為A,B,右頂點為F,設過點T()的直線TA,TB與橢圓分別交于點M,,其中m>0,

①設動點P滿足,求點P的軌跡
②設,求點T的坐標
③設,求證:直線MN必過x軸上的一定點
(其坐標與m無關)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓C的中心為坐標原點O,焦點在x軸上,離心率,且橢圓過點(2,0)。
(1)求橢圓方程;
(2)求圓上的點到橢圓C上點的距離的最大值與最小值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

經過橢圓=1(ab>0)的一個焦點和短軸端點的直線與原點的距離為,則該橢圓的離心率為
__________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓軸上,若焦距為4,則m等于  (   )
A.4B.5C.8D.14

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(12分)已知橢圓的中心是坐標原點,它的短軸長為,一個焦點為,一個定點為,且,過點的直線與橢圓相交于兩點。(1)求橢圓的方程和離心率;(2)若以為直徑的圓恰好過坐標原點,求直線的方程。

查看答案和解析>>

同步練習冊答案