【題目】若直線ax﹣by+2=0(a>0,b>0)和函數(shù)f(x)=ax+1+1(a>0且a≠1)的圖象恒過同一個定點,則當 + 取最小值時,函數(shù)f(x)的解析式是

【答案】f(x)=(2 ﹣2)x+1+1
【解析】函數(shù)f(x)=ax+1+1的圖象恒過(﹣1,2),故 a+b=1,
+ =( a+b)( + )= + + +
當且僅當b= a時取等號,將b= a代入 a+b=1得a=2 ﹣2,
故f(x)=(2 ﹣2)x+1+1.
故答案應(yīng)為:f(x)=(2 ﹣2)x+1+1
【考點精析】解答此題的關(guān)鍵在于理解基本不等式的相關(guān)知識,掌握基本不等式:,(當且僅當時取到等號);變形公式:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知Sn表示數(shù)列{an}的前n項和,若對任意的n∈N*滿足an1ana2 , 且a3=2,則S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)F(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是(
A.
B.
C.(3,+∞)
D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點P(2,4)作兩條互相垂直的直線l1,l2,l1x軸于A,l2y軸于B,求線段AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在直線上.

(Ⅰ)若圓Cy軸相切,求圓C的方程;

(Ⅱ)當a=0時,問在y軸上是否存在兩點A,B,使得對于圓C上的任意一點P,都有,若有,試求出點A,B的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知圓C:x2+y2﹣4x=0及點A(﹣1,0),B(1,2)

(1)若直線l平行于AB,與圓C相交于M,N兩點,MN=AB,求直線l的方程;
(2)在圓C上是否存在點P,使得PA2+PB2=12?若存在,求點P的個數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ ,g(x)= ﹣1. (Ⅰ)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(Ⅱ)若f(x)在[1,e]上的最小值為 ,求a的值;
(Ⅲ)當a=0時,若x≥1時,恒有xf(x)≤λ[g(x)+x]成立,求λ的最小值.

查看答案和解析>>

同步練習冊答案