精英家教網 > 高中數學 > 題目詳情

【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布如圖所示.

(1)請先求出頻率分布表中、位置相應的數據,再畫出頻率分布直方圖;

(2)該高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?

(3)在(2)的前提下,學校決定在6名學生中隨機抽取2名學生接受考官的面試,求第4組至少有一名學生被考官面試的概率?

【答案】(1);(2)3、4、5組每組各抽取3,2,1名學生進入第二輪面試;(3)0.6.

【解析】

試題分析:(1)根據人數之和等于100計算出處的數據,根據頻率之和等于1,計算出處的數據,再畫出頻率直方圖,注意每個小矩形的高等于頻率除以5;(2)根據頻率分布表,計算出第3,4,5的人數之比,則抽取6名學生,應該在第3,4,5組分別抽取3人,2人和1人;(3)這是一個古典概型問題,首先寫出基本事件總數,再寫出滿足條件的事件數,最后計算概率。

試題解析:(1)位置上的數據為,位置上的數據為;頻率分布直方圖如圖:

(2)3、4、5組每組各抽取3,2,1名學生進入第二輪面試.

(3)其概率模型為古典模型,設第3、4、5組抽取的學生分別為:.則其所有的基本事件有:

共有15個,符合條件的有9個;故概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓,圓

(1)若過點的直線被圓截得的弦長為,求直線的方程;

(2)圓是以1為半徑,圓心在圓上移動的動圓 ,若圓上任意一點分別作圓 的兩條切線,切點為,求的取值范圍;

(3)若動圓同時平分圓的周長、圓的周長,則動圓是否經過定點?若經過,求出定點的坐標;若不經過,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓方程+=1ab0,橢圓上一點到兩焦點的距離和為4,過焦點且垂直于x軸的直線交橢圓于A,B兩點,AB=2

1求橢圓方程;

2MN是橢圓C上的點,且直線OMON的斜率之積為,是否存在動點Px0,y0,若=+2,有x02+2y02為定值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等比數列{an}的公比為q,其前n項的積為Tn,并且滿足條件a1>1,a49a50-1>0(a49-1)(a50-1)<0.給出下列結論:

0<q<1;a1a99-1<0;T49的值是Tn中最大的;④使Tn>1成立的最大自然數n等于98.

其中所有正確結論的序號是____________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為坐標原點,已知橢圓的離心率為,拋物線的準線方程為

1求橢圓和拋物線的方程;

2設過定點的直線與橢圓交于不同的兩點,若在以為直徑的圓的外部,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為且滿足,數列中,對任意正整數

(1)求數列的通項公式;

(2)是否存在實數,使得數列是等比數列?若存在,請求出實數及公比的值,若不存在,請說明理由;

(3)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關人員中,抽取若干人組成研究小組,有關數據見下表(單位:人)

高校

相關人數

抽取人數

A

18

B

36

2

C

54

)求,;

)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題P;實數x滿足x2-4ax+3a2<0,其中a>0;命題q:實數x滿足x2-5x+60

(1)若a=1,且為真命題,求實數x的取值范圍。

(2)若p是q成立的必要不充分條件,求實數a 的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為弘揚民族古典文化,學校舉行古詩詞知識競賽,某輪比賽由節(jié)目主持人隨機從題庫中抽取題目讓選手搶答,回答正確給改選手記正10分,否則記負10分根據以往統(tǒng)計,某參賽選手能答對每一個問題的概率為;現(xiàn)記該選手在回答完個問題后的總得分為

1的概率;

2,求的分布列,并計算數學期望

查看答案和解析>>

同步練習冊答案