【題目】如圖,在邊長(zhǎng)為2的正方形中,分別為的中點(diǎn),的中點(diǎn),沿將正方形折起,使重合于點(diǎn),在構(gòu)成的四面體中,下列結(jié)論錯(cuò)誤的是

A. 平面

B. 直線與平面所成角的正切值為

C. 四面體的內(nèi)切球表面積為

D. 異面直線所成角的余弦值為

【答案】C

【解析】

可判斷;連接,則與平面所成的角,求出正切值可判斷;設(shè)四面體內(nèi)切球半徑為,表面積為,體積為,利用求出半徑可判斷;取的中點(diǎn),可得為異面直線所成角,求出余弦值可判斷.

翻折前,,故翻折后,,
平面,故正確.

連接,則與平面所成的角,

,的中點(diǎn),,

,又,,故正確.

設(shè)四面體內(nèi)切球半徑為,表面積為,體積為

,又因?yàn)?/span>,

所以,內(nèi)切球的表面積為錯(cuò),

的中點(diǎn),連接,則,

為異面直線所成角,

,

,故正確,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=若函數(shù)f (x)的圖象與直線yx有三個(gè)不同的公共點(diǎn),則實(shí)數(shù)a的取值集合為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段,某公路段的車流量(千輛/小時(shí))與汽車的平均速度(千米/小時(shí))之間的函數(shù)關(guān)系為:.

1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度為多少時(shí),車流量最大?最大車流量為多少?

2)若要求在該時(shí)段內(nèi)車流量超過10千輛/小時(shí),則汽車的平均速度應(yīng)在什么范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(-,0),B(,0),直線MAMB交于點(diǎn)M,它們的斜率之積為常數(shù)m(m≠0),且△MAB的面積最大值為,設(shè)動(dòng)點(diǎn)M的軌跡為曲線E.

(1)求曲線E的方程;

(2)過曲線E外一點(diǎn)QE的兩條切線l1,l2,若它們的斜率之積為-1,那么·是否為定值?若是,請(qǐng)求出該值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述中正確的是( )

A. ,則的充分條件是

B. ,則的充要條件是

C. 命題的否定是

D. 是等比數(shù)列,則為單調(diào)遞減數(shù)列的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購(gòu)物越來越受到人們的喜愛,各大購(gòu)物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購(gòu)物網(wǎng)站2017年1-8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).

1)根據(jù)數(shù)據(jù)可知具有線性相關(guān)關(guān)系請(qǐng)建立關(guān)于的回歸方程(系數(shù)精確到);

2)已知6月份該購(gòu)物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷量, 則每位員工每日獎(jiǎng)勵(lì)100元; 則每位員工每日獎(jiǎng)勵(lì)150元; 則每位員工每日獎(jiǎng)勵(lì)200元.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請(qǐng)你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元.(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位)

參考數(shù)據(jù) , 其中, 分別為第個(gè)月的促銷費(fèi)用和產(chǎn)品銷量, .

參考公式

1)對(duì)于一組數(shù)據(jù) , ,其回歸方程的斜率和截距的最小二乘估計(jì)分別為, .

2)若隨機(jī)變量服從正態(tài)分布,, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圖所示的五面體中,面ABCD為直角梯形,,平面平面ABCD,是邊長(zhǎng)為2的正三角形.

證明:平面ACF;

若點(diǎn)P在線段EF上,且二面角的余弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1b1=1,a2a4=10,b2b4a5.

(1)求{an}的通項(xiàng)公式;

(2)求和:b1b3b5+…+b2n-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案