某商場(chǎng)從生產(chǎn)廠家以每件20元購(gòu)進(jìn)一批商品,若該商品零售價(jià)定為元,則銷售量(單位:件)與零售價(jià)(單位:元)有如下關(guān)系:,問(wèn)該商品零售價(jià)定為多少元時(shí)毛利潤(rùn)最大,并求出最大毛利潤(rùn).(毛利潤(rùn)銷售收入進(jìn)貨支出)

零售價(jià)定為每件元時(shí),有最大毛利潤(rùn)為元.

解析試題分析:根據(jù)題意可知,毛利潤(rùn)銷售收入進(jìn)貨支出,則毛利潤(rùn)與零售價(jià)的函數(shù)關(guān)系為,再利用導(dǎo)數(shù)求出函數(shù)的最大值.
試題解析:由題意知



,得(舍).
此時(shí)
因?yàn)樵?img src="http://thumb.zyjl.cn/pic5/tikupic/4b/d/8dlvz.png" style="vertical-align:middle;" />附近的左側(cè),右側(cè)
是極大值.
根據(jù)實(shí)際意義知,是最大值,即零售價(jià)定為每件元時(shí),有最大毛利潤(rùn)為元.
考點(diǎn):本題考查了導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的應(yīng)用,以及導(dǎo)數(shù)在函數(shù)問(wèn)題中的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知a為實(shí)數(shù),x=1是函數(shù)的一個(gè)極值點(diǎn)。
(Ⅰ)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)m的取值范圍;
(Ⅱ)設(shè)函數(shù),對(duì)于任意,有不等式
恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:
(Ⅲ)對(duì)于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè)函數(shù),是否存在“分界線”?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的反函數(shù)為,設(shè)的圖象上在點(diǎn)處的切線在y軸上的截距為,數(shù)列{}滿足: 
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)在數(shù)列中,僅最小,求的取值范圍;
(Ⅲ)令函數(shù)數(shù)列滿足,求證:對(duì)一切n≥2的正整數(shù)都有 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)時(shí),都取得極值.
(1)求的值;
(2)若,求的單調(diào)區(qū)間和極值;
(3)若對(duì)都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),點(diǎn)為一定點(diǎn),直線分別與函數(shù)的圖象和軸交于點(diǎn),,記的面積為.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí), 若,使得, 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),.
(1)當(dāng)時(shí),函數(shù)處有極小值,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)有相同的極大值,且函數(shù)在區(qū)間上的最大值為,求實(shí)數(shù)的值(其中是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知實(shí)數(shù)滿足,,設(shè)函數(shù)
(1)當(dāng)時(shí),求的極小值;
(2)若函數(shù))的極小值點(diǎn)與的極小值點(diǎn)相同,求證:的極大值小于等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 
(1)求的單調(diào)區(qū)間和極值;
(2)當(dāng)m為何值時(shí),不等式 恒成立?
(3)證明:當(dāng)時(shí),方程內(nèi)有唯一實(shí)根.
(e為自然對(duì)數(shù)的底;參考公式:.)

查看答案和解析>>

同步練習(xí)冊(cè)答案