【題目】設(shè)頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過(guò)點(diǎn),過(guò)作拋物線的動(dòng)弦, ,并設(shè)它們的斜率分別為, .

(Ⅰ)求拋物線的方程;

(),求證:直線的斜率為定值,并求出其值;

III)若,求證:直線恒過(guò)定點(diǎn),并求出其坐標(biāo).

【答案】() ()見(jiàn)解析III見(jiàn)解析

【解析】試題分析:(Ⅰ先利用焦點(diǎn)在軸上設(shè)出拋物線的方程,再代點(diǎn)進(jìn)行求解;(在拋物線上設(shè)點(diǎn),利用斜率公式求相關(guān)直線的斜率,利用斜率和為0求出等量關(guān)系,進(jìn)而可以證明;III)利用斜率之積為定值得到等量關(guān)系,再寫(xiě)出直線的點(diǎn)斜式方程,進(jìn)而得到結(jié)論.

試題解析:()依題意,可設(shè)所求拋物線的方程為,

因拋物線過(guò)點(diǎn),故,拋物線的方程為.

()設(shè),則,

同理

, .

,即直線的斜率恒為定值,且值為.

III,.

直線的方程為 ,即.

代入上式得即為直線的方程,

所以直線恒過(guò)定點(diǎn),命題得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱,側(cè)面.

(Ⅰ)若分別是的中點(diǎn),求證:

(Ⅱ)若三棱柱的各棱長(zhǎng)均為2,側(cè)棱與底面所成的角為,問(wèn)在線段上是否存在一點(diǎn),使得平面?若存在,求的比值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為對(duì)數(shù)函數(shù),并且它的圖象經(jīng)過(guò)點(diǎn),函數(shù)=在區(qū)間上的最小值為,其中.

(1)求函數(shù)的解析式;

(2)求函數(shù)的最小值的表達(dá)式;

(3)是否存在實(shí)數(shù)同時(shí)滿足以下條件:①;②當(dāng)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>.若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)作出函數(shù)f(x)的大致圖象;

(2)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間;

(3)當(dāng)時(shí),由圖象寫(xiě)出f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離和它到直線的距離的比值為常數(shù),記動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與曲線相交于不同的兩點(diǎn), ,直線與曲線相交于不同的兩點(diǎn) ,且,求以 , 為頂點(diǎn)的凸四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點(diǎn)

(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點(diǎn)G,使GF⊥平面PCB,并證明你的結(jié)論;
(3)求DB與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)的圖象如圖所示,曲線BCD為拋物線的一部分.

(Ⅰ)求fx)解析式;

(Ⅱ)若fx)=1,求x的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線關(guān)于軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過(guò)拋物線的焦點(diǎn).

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn) ,且滿足,證明直線過(guò)軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案