【題目】對(duì)于維向量,若對(duì)任意均有,則稱向量. 對(duì)于兩個(gè)向量定義.

(1)若, 求的值;

(2)現(xiàn)有一個(gè)向量序列: 且滿足: ,求證:該序列中不存在向量.

(3) 現(xiàn)有一個(gè)向量序列: 且滿足: ,若存在正整數(shù)使得向量序列中的項(xiàng),求出所有的.

【答案】(1)(2)不存在(3)

【解析】試題分析:(Ⅰ)根據(jù)的定義可求得其值;(Ⅱ)利用反證法,向量的每一個(gè)分量變?yōu)?/span>,都需要奇數(shù)次變化,根據(jù),得出矛盾;(Ⅲ)根據(jù)題意可得.

試題解析:(Ⅰ)由于 ,由定義,

可得.

(Ⅱ)反證法:若結(jié)論不成立,即存在一個(gè)含向量序列

使得, .

因?yàn)橄蛄?/span>的每一個(gè)分量變?yōu)?/span>,都需要奇數(shù)次變化,

不妨設(shè)的第個(gè)分量變化了次之后變成,

所以將中所有分量 變?yōu)?/span> 共需要 次,此數(shù)為奇數(shù).

又因?yàn)?/span>,說(shuō)明中的分量有個(gè)數(shù)值發(fā)生改變,

進(jìn)而變化到,所以共需要改變數(shù)值次,此數(shù)為偶數(shù),所以矛盾.

所以該序列中不存在向量.

(Ⅲ)此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四個(gè)函數(shù)y=sin|x|,y=cos|x|,y= ,y=lg|sinx|中,以π為周期,在 上單調(diào)遞增的偶函數(shù)是(
A.y=sin|x|
B.y=cos|x|
C.y=
D.y=lg|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,曲線上的任意一點(diǎn)滿足: .

(1)求點(diǎn)的軌跡方程;

(2)過(guò)點(diǎn)的直線與曲線交于, 兩點(diǎn),交軸于點(diǎn),設(shè), ,試問(wèn)是否為定值?如果是定值,請(qǐng)求出這個(gè)定值,如果不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)p:不論m取何實(shí)數(shù),方程x2xm0必有實(shí)數(shù)根;

(2)q:存在一個(gè)實(shí)數(shù)x,使得x2x10;

(3)r:等圓的面積相等,周長(zhǎng)相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)設(shè),若對(duì)任意的,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明計(jì)劃在811日至820日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計(jì)數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時(shí)容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機(jī)選擇8月11日至8月19日中的某一天到達(dá)該主題公園,并游覽.

(1)求小明連續(xù)兩天都遇上擁擠的概率;

(2)設(shè)是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學(xué)期望;

(3)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某顏料公司生產(chǎn) 兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一條之內(nèi)甲、乙、丙三種染料的用量分別不超過(guò)50噸,160噸和200噸,如果產(chǎn)品的利潤(rùn)為300元/噸, 產(chǎn)品的利潤(rùn)為200元/噸,則該顏料公司一天之內(nèi)可獲得最大利潤(rùn)為( )

A. 14000元 B. 16000元 C. 18000元 D. 20000元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知θ∈[0, ],直線xsinθ+ycosθ﹣1=0和圓C:(x﹣1)2+(y﹣cosθ)2= 相交所得的弦長(zhǎng)為 ,則θ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列中,已知,且成等差數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案