【題目】已知函數(shù)f(x)=﹣x3+ax2﹣x﹣1在(﹣∞,+∞)上是單調(diào)函數(shù),則實數(shù)a的取值范圍是( 。
A.[﹣ , ]
B.(﹣ , )
C.(﹣∞,﹣)∪( , +∞)
D.(﹣∞,﹣)∩( , +∞)
【答案】A
【解析】函數(shù)f(x)=﹣x3+ax2﹣x﹣1的導數(shù)為f′(x)=﹣3x2+2ax﹣1,
∵函數(shù)f(x)在(﹣∞,+∞)上是單調(diào)函數(shù),
∴在(﹣∞,+∞)上f′(x)≤0恒成立,
即﹣3x2+2ax﹣1≤0恒成立,
∴△=4a2﹣12≤0,
解得﹣≤a≤
∴實數(shù)a的取值范圍是[-,]
故選:A
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識,掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集,以及對利用導數(shù)研究函數(shù)的單調(diào)性的理解,了解一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學 來源: 題型:
【題目】教育部,體育總局和共青團中央號召全國各級各類學校要廣泛,深入地開展全國億萬大,中學生陽光體育運動,為此,某校學生會對高二年級2014年9月與10月這兩個月內(nèi)參加體育運動的情況進行統(tǒng)計,隨機抽取了100名學生作為樣本,得到這100名學生在該月參加體育運動總時間的小時數(shù),根據(jù)此數(shù)據(jù)作出了如下的頻數(shù)和頻率的統(tǒng)計表和 頻率分布直方圖:
(I)求a,p的值,并補全頻率分布直方圖;
(Ⅱ)根據(jù)上述數(shù)據(jù)和直方圖,試估計運動時間在[25,55]小時的學生體育運動的平均時間;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知焦點在x正半軸上,頂點為坐標系原點的拋物線過點A(1,﹣2).
(1)求拋物線的標準方程;
(2)過拋物線的焦點F的直線l與拋物線交于兩點M、N,且△MNO(O為原點)的面積為2 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三棱錐P﹣ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且這四個頂點都在半徑為2的球面上,PA=2PB,則這個三棱錐的三個側(cè)棱長的和的最大值為( )
A.16
B.
C.
D.32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解高一期末數(shù)學考試的情況,從高一的所有學生數(shù)學試卷中隨機抽取n份試卷進行成績分析,得到數(shù)學成績頻率分布直方圖(如圖所示),其中成績在[50,60)的學生人數(shù)為6.
(Ⅰ)求直方圖中x的值;
(Ⅱ)試估計所抽取的數(shù)學成績的平均數(shù);
(Ⅲ)試根據(jù)樣本估計“該校高一學生期末數(shù)學考試成績≥70”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R).
(Ⅰ)當a=2時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)+ , 求函數(shù)h(x)的單調(diào)區(qū)間;
(Ⅲ)若g(x)=﹣ , 在[1,e](e=2.71828…)上存在一點x0 , 使得f(x0)≤g(x0)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】非空集合G關(guān)于運算⊕滿足:
(1)對任意a,b∈G,都有a+b∈G;
(2)存在e∈G使得對于一切a∈G都有a⊕e=e⊕a=a,
則稱G是關(guān)于運算⊕的融洽集,
現(xiàn)有下列集合與運算:
①G是非負整數(shù)集,⊕:實數(shù)的加法;
②G是偶數(shù)集,⊕:實數(shù)的乘法;
③G是所有二次三項式構(gòu)成的集合,⊕:多項式的乘法;
④G={x|x=a+b ,a,b∈Q},⊕:實數(shù)的乘法;
其中屬于融洽集的是(請?zhí)顚懢幪枺?/span>
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的“8”字形曲線是由兩個關(guān)于x軸對稱的半圓和一個雙曲線的一部分組成的圖形,其中上半個圓所在圓方程是x2+y2﹣4y﹣4=0,雙曲線的左、右頂
點A、B是該圓與x軸的交點,雙曲線與半圓相交于與x軸平行的直徑的兩端點.
(1)試求雙曲線的標準方程;
(2)記雙曲線的左、右焦點為F1、F2 , 試在“8”字形曲線上求點P,使得
∠F1PF2是直角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com