已知函數(shù)和的圖象關(guān)于軸對(duì)稱,且.
(1)求函數(shù)的解析式;
(2)解不等式.
(1);(2)不等式的解集是.
解析試題分析:(1)先利用兩個(gè)函數(shù)圖象關(guān)于軸對(duì)稱的關(guān)系,得出函數(shù)上的點(diǎn)與其關(guān)于軸對(duì)稱點(diǎn)在函數(shù),進(jìn)而通過坐標(biāo)之間的關(guān)系得出函數(shù)的解析式;(2)方法一是去絕對(duì)值,將問題轉(zhuǎn)化為二次不等式,從而解出相應(yīng)的不等式;方法二是由于等于或,由 成立可知,小于或,從而將原不等式等價(jià)轉(zhuǎn)化為或,最終求解出原不等式.
試題解析:試題解析:(1)設(shè)函數(shù)圖象上任意一點(diǎn),
由已知點(diǎn)關(guān)于軸對(duì)稱點(diǎn)一定在函數(shù)圖象上,
代入,得;
(2)
方法1或,
或,
或,
不等式的解集是;
方法2:等價(jià)于或,
解得或,
所以解集為.
考點(diǎn):1.函數(shù)圖象的對(duì)稱性;2.含絕對(duì)值的不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù),如果對(duì)任意,恒有(,)成立,則稱為階縮放函數(shù).
(1)已知函數(shù)為二階縮放函數(shù),且當(dāng)時(shí),,求的值;
(2)已知函數(shù)為二階縮放函數(shù),且當(dāng)時(shí),,求證:函數(shù)在上無零點(diǎn);
(3)已知函數(shù)為階縮放函數(shù),且當(dāng)時(shí),的取值范圍是,求在()上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)(為實(shí)常數(shù)).
(1)當(dāng)時(shí),證明:
①不是奇函數(shù);②是上的單調(diào)遞減函數(shù).
(2)設(shè)是奇函數(shù),求與的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且.
(1)求的值,并確定函數(shù)的定義域;
(2)用定義研究函數(shù)在范圍內(nèi)的單調(diào)性;
(3)當(dāng)時(shí),求出函數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知偶函數(shù)滿足:當(dāng)時(shí),,當(dāng)時(shí),.
(Ⅰ).求表達(dá)式;
(Ⅱ).若直線與函數(shù)的圖像恰有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ).試討論當(dāng)實(shí)數(shù)滿足什么條件時(shí),直線的圖像恰有個(gè)公共點(diǎn),且這個(gè)公共點(diǎn)均勻分布在直線上.(不要求過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)().
(1)討論的奇偶性;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間;
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實(shí)數(shù)k的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com