【題目】已知函數(shù) .
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)當(dāng)時(shí),討論函數(shù)的單調(diào)性.
【答案】(1)f(x)的極小值為4,無(wú)極大值.(2)當(dāng)a<﹣2時(shí)f(x),的遞減區(qū)間為(0,﹣)和(,+∞),遞增區(qū)間為(﹣,);當(dāng)a=﹣2時(shí),f(x)在(0,+∞)單調(diào)遞減;當(dāng)﹣2<a<0時(shí),f(x)的遞減區(qū)間為(0,)和(﹣,+∞),遞增區(qū)間為(,﹣).
【解析】
(1)當(dāng)時(shí),求出函數(shù)的導(dǎo)數(shù),由求方程的根,判斷所求根兩邊導(dǎo)函數(shù)的符號(hào)即可得到函數(shù)的極值;(2) 求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間.
.
(1)依題意知f(x)的定義域?yàn)椋?/span>0,+∞),
當(dāng)a=2時(shí),, ,
令f′(x)=0,解得x= ,
當(dāng)0<x<時(shí),f′(x)<0;
當(dāng)x≥時(shí),f′(x)>0
又∵f()=2+2=4
∴f(x)的極小值為4,無(wú)極大值.
(2)
當(dāng)a<﹣2時(shí),﹣<,
令f′(x)<0 得 0<x<﹣或x>,
令f′(x)>0 得﹣<x<;
當(dāng)﹣2<a<0時(shí),得﹣>,
令f′(x)<0 得 0<x<或x>﹣,
令f′(x)>0 得 <x<﹣ ;
當(dāng)a=﹣2時(shí),,
綜上所述,當(dāng)a<﹣2時(shí)f(x)的遞減區(qū)間為(0,﹣)和(,+∞),遞增區(qū)間為(﹣,);
當(dāng)a=﹣2時(shí),f(x)在(0,+∞)單調(diào)遞減;
當(dāng)﹣2<a<0時(shí),f(x)的遞減區(qū)間為(0,)和(﹣,+∞),遞增區(qū)間為(,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且2cosAcosC(tanAtanC﹣1)=1.
(Ⅰ)求B的大;
(Ⅱ)若 , ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京市環(huán)境保護(hù)監(jiān)測(cè)中心每月向公眾公布北京市各區(qū)域的空氣質(zhì)量狀況年1月份各區(qū)域的濃度情況如表:
各區(qū)域1月份濃度單位:微克立方米表
區(qū)域 | 濃度 | 區(qū)域 | 濃度 | 區(qū)域 | 濃度 |
懷柔 | 27 | 海淀 | 34 | 平谷 | 40 |
密云 | 31 | 延慶 | 35 | 豐臺(tái) | 42 |
門(mén)頭溝 | 32 | 西城 | 35 | 大興 | 46 |
順義 | 32 | 東城 | 36 | 開(kāi)發(fā)區(qū) | 46 |
昌平 | 32 | 石景山 | 37 | 房山 | 47 |
朝陽(yáng) | 34 | 通州 | 39 |
從上述表格隨機(jī)選擇一個(gè)區(qū)域,其2018年1月份的濃度小于36微克立方米的概率是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(﹣x)+f(x+3)=0;當(dāng)x∈(0,3)時(shí),f(x)= ,其中e是自然對(duì)數(shù)的底數(shù),且e≈2.72,則方程6f(x)﹣x=0在[﹣9,9]上的解的個(gè)數(shù)為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x .
(1)求方程f(x)= 的根;
(2)求證:f(x)在[0,+∞)上是增函數(shù);
(3)若對(duì)于任意x∈[0,+∞),不等式f(2x)≥f(x)﹣m恒成立,求實(shí)數(shù)m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a∈R,函數(shù)f(x)=lnx﹣ax.
(1)若a=2,求曲線y=f(x)在P(1,﹣2)處的切線方程;
(2)若f(x)無(wú)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若f(x)有兩個(gè)相異零點(diǎn)x1 , x2 , 求證:x1x2>e2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l過(guò)點(diǎn)P(2,1),且與x軸,y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)取最大值時(shí)l的方程為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買(mǎi)1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買(mǎi)這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買(mǎi),則每個(gè)500元.現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.
記表示臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺(tái)機(jī)器在購(gòu)買(mǎi)易損零件上所需的費(fèi)用(單位:元),表示購(gòu)機(jī)的同時(shí)購(gòu)買(mǎi)的易損零件數(shù).
(1)若,求與的函數(shù)解析式;
(2)若要求 “需更換的易損零件數(shù)不大于”的頻率不小于,求的最小值;
(3)假設(shè)這臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買(mǎi)個(gè)易損零件,或每臺(tái)都購(gòu)買(mǎi)個(gè)易損零件,分別計(jì)算這臺(tái)機(jī)器在購(gòu)買(mǎi)易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買(mǎi)臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)個(gè)還是個(gè)易損零件?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)< ,則不等式f(x2)< + 的解集為( )
A.(﹣ , )
B.(﹣∞,﹣1)∪(1,+∞)??
C.(﹣1,1)
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com