【題目】近年來,某市立足本地豐厚的文化旅游資源,以建設(shè)文化旅游強(qiáng)市,創(chuàng)建國家全域旅游示范市為引領(lǐng),堅(jiān)持以農(nóng)為本,以鄉(xiāng)為魂,以旅促農(nóng),多元化推動(dòng)產(chǎn)業(yè)化發(fā)展,文化和旅游扶貪工作卓有成效,精準(zhǔn)扶貧穩(wěn)步推進(jìn).該市旅游局為了更好的了解每年鄉(xiāng)村游人數(shù)的變化情況,繪制了如圖所示的柱狀圖.則下列說法錯(cuò)誤的是( )
0
A.鄉(xiāng)村游人數(shù)逐年上升
B.相比于前一年,2015年鄉(xiāng)村游人數(shù)增長率大于2014年鄉(xiāng)村游人數(shù)增長率
C.近8年鄉(xiāng)村游人數(shù)的平均數(shù)小于2016年鄉(xiāng)村游人數(shù)
D.從2016年開始,鄉(xiāng)村游人數(shù)明顯增多
【答案】C
【解析】
根據(jù)柱狀圖上的數(shù)據(jù),對四個(gè)選項(xiàng)逐個(gè)分析可得答案.
從柱狀圖中看出,鄉(xiāng)村游人數(shù)逐年上升,故A正確:
2015年鄉(xiāng)村游增長人數(shù)為萬人,2014年鄉(xiāng)村游增長人數(shù)為萬人.由,故B正確;
近8年鄉(xiāng)村游人數(shù)的平均數(shù)為,即近8年鄉(xiāng)村游人數(shù)的平均數(shù)大于2016年鄉(xiāng)村游人數(shù),故C錯(cuò)誤;
從2016年開始,鄉(xiāng)村游人數(shù)增長速度明顯加快,故D正確.
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(13分)
在平面直角坐標(biāo)系xOy中,拋物線上異于坐標(biāo)原點(diǎn)O的兩不同動(dòng)點(diǎn)A、B滿足(如圖所示).
(Ⅰ)求得重心G(即三角形三條中線的交點(diǎn))的軌跡方程;
(Ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)函數(shù),討論的單調(diào)性;
(2)函數(shù)()的圖象在點(diǎn)處的切線為,證明:有且只有兩個(gè)點(diǎn)使得直線與函數(shù)的圖象也相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】受疫情影響,某電器廠生產(chǎn)的空調(diào)滯銷,經(jīng)研究決定,在已有線下門店銷售的基礎(chǔ)上,成立線上營銷團(tuán)隊(duì),大力發(fā)展“網(wǎng)紅”經(jīng)濟(jì),當(dāng)線下銷售人數(shù)為(人)時(shí),每天線下銷售空調(diào)可達(dá)(百臺),當(dāng)線上銷售人數(shù)為(人)()時(shí),每天線上銷量達(dá)到(百臺).
(1)解不等式:,并解釋其實(shí)際意義;
(2)若該工廠大有銷售人員()人,按市場需求,安排人員進(jìn)行線上或線下銷售,問該工廠每天銷售空調(diào)總臺數(shù)的最大值是多少百臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,且與拋物線交于,兩點(diǎn), (為坐標(biāo)原點(diǎn))的面積為.
(1)求橢圓的方程;
(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長軸端點(diǎn)),為左、右焦點(diǎn),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為:,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)求曲線和直線l的直角坐標(biāo)方程;
(2)若點(diǎn)在曲線上,且點(diǎn)到直線l的距離最小,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng),()時(shí),求證:;
(3)若函數(shù)有兩個(gè)極值點(diǎn),,求證:(e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中, ,動(dòng)點(diǎn)滿足:以為直徑的圓與軸相切.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,直線過點(diǎn)且與交于兩點(diǎn),當(dāng)與的面積之和取得最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)為,,點(diǎn)在橢圓上,且面積的最大值為,周長為6.
(1)求橢圓的方程,并求橢圓的離心率;
(2)已知直線:與橢圓交于不同的兩點(diǎn),若在軸上存在點(diǎn),使得與中點(diǎn)的連線與直線垂直,求實(shí)數(shù)的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com