設(shè)函數(shù)
(1)當(dāng)時(shí),函數(shù)取得極值,求的值;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間[1,2]上的最大值;
(3)當(dāng)時(shí),關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的值.

(1);(2)時(shí),取最大值;(3)

解析試題分析:(1)先求出,因?yàn)楫?dāng)時(shí),函數(shù)取得極值,所以,從而求出;(2)根據(jù)判斷函數(shù)在區(qū)間[1,2]上的單調(diào)性,從而判斷出最大值點(diǎn),求出最大值;(3)由題意可知,方程有唯一實(shí)數(shù)解,所以有唯一實(shí)數(shù)解,設(shè),則函數(shù)圖像與軸有且只有一個(gè)交點(diǎn),根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,可知函數(shù)存在極小值即為最小值,最小值為,從中求出
試題解析:
(1)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/3/sxgbe.png" style="vertical-align:middle;" />,所以.因?yàn)楫?dāng)時(shí),函數(shù)取得極值,所以,所以.經(jīng)檢驗(yàn),符合題意.
(2),令,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/39/2/8sgei.png" style="vertical-align:middle;" />,所以,即在[1,2]上單調(diào)遞增,
所以時(shí),取最大值
(3)因?yàn)榉匠?img src="http://thumb.zyjl.cn/pic5/tikupic/bb/a/azzgx1.png" style="vertical-align:middle;" />有唯一實(shí)數(shù)解,
所以有唯一實(shí)數(shù)解,
設(shè),則
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7a/b/ounh91.png" style="vertical-align:middle;" />,,
所以(舍去),
當(dāng)時(shí),,上單調(diào)遞減,
當(dāng)時(shí),,上單調(diào)遞增,
所以當(dāng)時(shí),取最小值,則  即,
所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7a/b/ounh91.png" style="vertical-align:middle;" />,所以(*),設(shè)函數(shù)
因?yàn)楫?dāng)時(shí),是增函數(shù),所以至多有一解.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b6/b/1td3r1.png" style="vertical-align:middle;" />,所以方程(*)的解為,
,解得
考點(diǎn):本題考查了導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,突出考查了數(shù)形結(jié)合、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(I) 當(dāng),求的最小值;
(II) 若函數(shù)在區(qū)間上為增函數(shù),求實(shí)數(shù)的取值范圍;
(III)過點(diǎn)恰好能作函數(shù)圖象的兩條切線,并且兩切線的傾斜角互補(bǔ),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.
(I)求函數(shù)的解析式;
(II)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及函數(shù)取得極值時(shí)對(duì)應(yīng)的自變量的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象與直線相切于點(diǎn).
(1)求實(shí)數(shù)的值; (2)求的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (為實(shí)常數(shù)) .
(1)當(dāng)時(shí),求函數(shù)上的最大值及相應(yīng)的值;
(2)當(dāng)時(shí),討論方程根的個(gè)數(shù).
(3)若,且對(duì)任意的,都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),曲線在點(diǎn)處切線方程為.
(1)求的值;
(2)討論的單調(diào)性,并求的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),令(),()為曲線y=上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),恒過定點(diǎn)
(1)求實(shí)數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個(gè)單位,再向左平移個(gè)單位后得到函數(shù),設(shè)函數(shù)的反函數(shù)為,直接寫出的解析式;
(3)對(duì)于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其對(duì)應(yīng)的圖像為曲線C;若曲線C過,且在點(diǎn)處的切斜線率
(1)求函數(shù)的解析式
(2)證明不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案