【題目】右邊程序執(zhí)行后輸出的結(jié)果是( )
A.-1
B.0
C.1
D.2
【答案】B
【解析】開始滿足S<15,第一次循環(huán):S=S+n=5,n=n-1=4;
滿足S<15,第二次循環(huán):S=S+n=9,n=n-1=3;
滿足S<15,第三次循環(huán):S=S+n=12,n=n-1=2;
滿足S<15,第四次循環(huán):S=S+n=14,n=n-1=1;
滿足S<15,第五次循環(huán):S=S+n=15,n=n-1=0;
此時不滿足S<15,結(jié)束循環(huán),所以輸出n的值為0。
【考點精析】本題主要考查了算法的條件語句的相關(guān)知識點,需要掌握“條件”表示判斷的條件;“語句”表示滿足條件時執(zhí)行的操作內(nèi)容,條件不滿足時,結(jié)束程序;算機在執(zhí)行時首先對IF后的條件進行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米, 米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若 ,求此時管道的長度L;
(3)當θ取何值時,污水凈化效果最好?并求出此時管道的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的焦距為2 ,長軸長為4.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)如圖,過坐標原點O作兩條互相垂直的射線,與橢圓C交于A,B兩點.設(shè)A(x1 , y1),B(x2 , y2),直線AB的方程為y=﹣2x+m(m>0),試求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三個點A(2,1)、B(3,2)、D(﹣1,4).
(1)求證: ;
(2)要使四邊形ABCD為矩形,求點C的坐標,并求矩形ABCD兩對角線所夾銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足 =1,公差d∈(﹣1,0),當且僅當n=9時,數(shù)列{an}的前n項和Sn取得最大值,求該數(shù)列首項a1的取值范圍( )
A.( , )
B.[ , ]
C.( , )
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}前n項和
(1)求數(shù)列{an}的通項公式;
(2)若 ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有1名女教師和2名男教師參加說題比賽,共有2道備選題目,若每位選手從中有放回地隨機選出一道題進行說題,其中恰有一男一女抽到同一道題的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一商場在某日促銷活動中,對9時至14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示,已知9時至10時的銷售額為2.5萬元,則11時至12時的銷售為( )
A.100萬元
B.10萬元
C.7.5萬元
D.6.25萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均數(shù),方差分別是( )
A.3,
B.3,
C.4,
D.4,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com