【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,其中.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;

(Ⅱ)在平面直角坐標系中,設直線與曲線相交于,兩點.若點恰為線段的三等分點,求的值.

【答案】(Ⅰ);;(Ⅱ).

【解析】

(Ⅰ)利用消參法消去參數(shù),即可將直線的參數(shù)方程轉化為普通方程,利用互化公式,,將曲線的極坐標方程轉化為直角坐標方程;

(Ⅱ)把直線的參數(shù)方程代入曲線的直角坐標方程,得出關于的一元二次方程,根據(jù)韋達定理得出,再利用直線參數(shù)方程中的參數(shù)的幾何意義,即可求出的值.

解:(Ⅰ)由于直線的參數(shù)方程為為參數(shù)),

消去參數(shù),得直線的普通方程為,

,,

得曲線的直角坐標方程為.

(Ⅱ)將直線的參數(shù)方程代入曲線的直角坐標方程,

并整理,得

,是方程的兩個根,則有,

,,

由于點恰為線段的三等分點,

所以不妨設,

解得:,符合條件

.的值為4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知xy之間的幾組數(shù)據(jù)如表:

x

1

2

3

4

y

1

m

n

4

如表數(shù)據(jù)中y的平均值為2.5,若某同學對m賦了三個值分別為1.5,2,2.5,得到三條線性回歸直線方程分別為,,,對應的相關系數(shù)分別為,,下列結論中錯誤的是(

參考公式:線性回歸方程中,其中,.相關系數(shù)

A.三條回歸直線有共同交點B.相關系數(shù)中,最大

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小區(qū)為了調查本小區(qū)業(yè)主對物業(yè)服務滿意度的真實情況,對本小區(qū)業(yè)主進行了調查,調查中問了兩個問題1:你的手機尾號是不是奇數(shù)?問題2:你是否滿意物業(yè)的服務?調查者設計了一個隨機化裝置,其中裝有大小、形狀和質量完全相同的白球和紅球,每個被調查者隨機從裝置中摸到紅球和白球的可能性相同,其中摸到白球的業(yè)主回答第一個問題,摸到紅球的業(yè)主回答第二個問題,回答的人往一個盒子中放一個小石子,回答的人什么都不要做由于問題的答案只有,而且回答的是哪個問題別人并不知道,因此被調查者可以毫無顧慮地給出符合實際情況的答案.已知某小區(qū)80名業(yè)主參加了問卷,且有47名業(yè)主回答了,由此估計本小區(qū)對物業(yè)服務滿意的百分比大約為(

A.85%B.75%C.63.5%D.67.5%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,點在橢圓上,點在圓上,且圓上的所有點均在橢圓外,若的最小值為,且橢圓的長軸長恰與圓的直徑長相等,則下列說法正確的是(

A.橢圓的焦距為B.橢圓的短軸長為

C.的最小值為D.過點的圓的切線斜率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大提出:堅決打贏脫貧攻堅戰(zhàn),做到精準扶貧.某縣積極引導農(nóng)民種植一種名貴中藥材,從而大大提升了該縣村民的經(jīng)濟收入.2019年年底,該機構從該縣種植的這種名貴藥材的農(nóng)戶中隨機抽取了100戶,統(tǒng)計了他們2019年因種植,中藥材所獲純利潤(單位:萬元)的情況(假定農(nóng)戶因種植中藥材這一項一年最多獲利11萬元),統(tǒng)計結果如下表所示:

1)由表可以認為,該縣農(nóng)戶種植中藥材所獲純利潤Z(單位:萬元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點值),近似為樣本方差.若該縣有1萬戶農(nóng)戶種植了該中藥材,試估算所獲純利潤Z在區(qū)間(1.9,8.2)的戶數(shù);

2)為答謝廣大農(nóng)戶的積極參與,該調查機構針對參與調查的農(nóng)戶舉行了抽獎活動,抽獎規(guī)則如下:在一箱子中放置5個除顏色外完全相同的小球,其中紅球1個,黑球4.讓農(nóng)戶從箱子中隨機取出一個小球,若取到紅球,則抽獎結束;若取到黑球,則將黑球放回箱中,讓他繼續(xù)取球,直到取到紅球為止(取球次數(shù)不超過10).若農(nóng)戶取到紅球,則視為中獎,獲得2000元的獎勵,若一直未取到紅球,則視為不中獎.現(xiàn)農(nóng)戶張明參加了抽獎活動,記他中獎時取球的次數(shù)為隨機變量X,他取球的次數(shù)為隨機變量Y.

①證明:為等比數(shù)列;

②求Y的數(shù)學期望.(精確到0.001)

參考數(shù)據(jù):.若隨機變量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著2022年北京冬奧會的臨近,中國冰雪產(chǎn)業(yè)快速發(fā)展,冰雪運動人數(shù)快速上升,冰雪運動市場需求得到釋放.如圖是2012-2018年中國雪場滑雪人數(shù)(單位:萬人)與同比增長情況統(tǒng)計圖則下面結論中正確的是( .

A.2012-2018年,中國雪場滑雪人數(shù)逐年增加;

B.2013-2015年,中國雪場滑雪人數(shù)和同比增長率均逐年增加;

C.中國雪場2015年比2014年增加的滑雪人數(shù)和2018年比2017年增加的滑雪人數(shù)均為220萬人,因此這兩年的同比增長率均有提高;

D.2016-2018年,中國雪場滑雪人數(shù)的增長率約為23.4%.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年春節(jié)突如其來的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國各地的白衣天使走上戰(zhàn)場的第一線,某醫(yī)院抽調甲、乙兩名醫(yī)生,抽調、三名護士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護士被選在第一醫(yī)院工作的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,其中.

(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;

(Ⅱ)在平面直角坐標系中,設直線與曲線相交于,兩點.若點恰為線段的三等分點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓,點是拋物線的焦點,過點F作直線交拋物線于M,N兩點,延長分別交橢圓于A,B兩點,記的面積分別是,.

(1)求的值及拋物線的準線方程;

(2)求的最小值及此時直線的方程.

查看答案和解析>>

同步練習冊答案