某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會的干部競選.
(1)設(shè)所選3人中女生人數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)在男生甲被選中的情況下,求女生乙也被選中的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某車間共有名工人,隨機(jī)抽取名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(Ⅰ) 根據(jù)莖葉圖計算樣本均值;
(Ⅱ) 日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人,根據(jù)莖葉圖推斷該車間名工人中有幾名優(yōu)秀工人;
(Ⅲ) 從該車間名工人中,任取人,求恰有名優(yōu)秀工人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了響應(yīng)學(xué)校“學(xué)科文化節(jié)”活動,數(shù)學(xué)組舉辦了一場數(shù)學(xué)知識比賽,共分為甲、乙兩組.其中甲組得滿分的有1個女生和3個男生,乙組得滿分的有2個女生和4個男生.現(xiàn)從得滿分的學(xué)生中,每組各任選2個學(xué)生,作為數(shù)學(xué)組的活動代言人.
(1)求選出的4個學(xué)生中恰有1個女生的概率;(2)設(shè)為選出的4個學(xué)生中女生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為普及高中生安全逃生知識與安全防護(hù)能力,某學(xué)校高一年級舉辦了高中生安全知識與安全逃生能力競賽. 該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ||
[70,80) | ||
[80,90) | ||
[90,100) | ||
合 計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
袋中有12個小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率為,得到黑球或黃球的概率是,得到黃球或綠球的概率是,試求得到黑球、黃球、綠球的概率各是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的6個頂點(diǎn),在頂點(diǎn)取自A,B,C,D,E,F(xiàn)的所有三角形中,隨機(jī)(等可能)取一個三角形.設(shè)隨機(jī)變量X為取出三角形的面積.
(Ⅰ) 求概率P ( X=);
(Ⅱ) 求數(shù)學(xué)期望E ( X ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)的.同一條道路去程與回程是否堵車互不影響.假設(shè)李生早上需要先開車送小孩去丙地小學(xué),再返回經(jīng)甲地趕去乙地上班,
(1)寫出李生可能走的所有路線;(比如DDA表示走D路從甲到丙,再走D路回到甲,然后走A路到達(dá)乙);
(2)假設(shè)從丙地到甲地時若選擇走道路D會遇到擁堵,并且從甲地到乙地時若選擇走道路B也會遇到擁堵,其它方向均通暢,但李生不知道相關(guān)信息,那么從出發(fā)到回到上班地沒有遇到過擁堵的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情
況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)
的.同一條道路去程與回程是否堵車相互獨(dú)立. 假設(shè)李生早上需要先開車送小孩去丙地小學(xué),
再返回經(jīng)甲地趕去乙地上班.假設(shè)道路、、上下班時間往返出現(xiàn)擁堵的概率都是,
道路、上下班時間往返出現(xiàn)擁堵的概率都是,只要遇到擁堵上學(xué)和上班的都會遲到.
(1)求李生小孩按時到校的概率;
(2)李生是否有八成把握能夠按時上班?
(3)設(shè)表示李生下班時從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
兩枚質(zhì)量均勻的正方體骰子,六個面上分別標(biāo)有數(shù)字1、2、3、4、5、6,拋擲兩枚骰子.記兩枚骰子朝上的面上的數(shù)字分別為p,q,若把p,q分別作為點(diǎn)A的橫坐標(biāo)和縱坐標(biāo),
(1)用列表法或樹狀圖表示出點(diǎn)A(p,q)所有可能出現(xiàn)的結(jié)果;
(2)求點(diǎn)A(p,q)在函數(shù)y=x-1的圖象上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com