科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB邊上的一點,以AD為直徑的⊙O交BC于點E,交AC于點F,過點C作CG⊥AB交AB于點G,交AE于點H,過點E的弦EP交AB于點Q(EP不是直徑),點Q為弦EP的中點,連結(jié)BP,BP恰好為⊙O的切線.
(1)求證:BC是⊙O的切線.
(2)求證:=.
(3)若sin∠ABC═,AC=15,求四邊形CHQE的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A的坐標為(0,2),點B的坐標為(1,0),連結(jié)AB,以AB為邊在第一象限內(nèi)作正方形ABCD,直線BD交雙曲線y═(k≠0)于D、E兩點,連結(jié)CE,交x軸于點F.
(1)求雙曲線y=(k≠0)和直線DE的解析式.
(2)求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】端午節(jié)是中國的傳統(tǒng)節(jié)日.今年端午節(jié)前夕,遂寧市某食品廠抽樣調(diào)查了河東某居民區(qū)市民對A、B、C、D四種不同口味粽子樣品的喜愛情況,并將調(diào)查情況繪制成如圖兩幅不完整統(tǒng)計圖:
(1)本次參加抽樣調(diào)查的居民有 人.
(2)喜歡C種口味粽子的人數(shù)所占圓心角為 度.根據(jù)題中信息補全條形統(tǒng)計圖.
(3)若該居民小區(qū)有6000人,請你估計愛吃D種粽子的有 人.
(4)若有外型完全相同的A、B、C、D棕子各一個,煮熟后,小李吃了兩個,請用列表或畫樹狀圖的方法求他第二個吃的粽子恰好是A種粽子的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀以下材料,并解決相應問題:
小明在課外學習時遇到這樣一個問題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則這兩個函數(shù)互為“旋轉(zhuǎn)函數(shù)”.求函數(shù)y=2x2﹣3x+1的旋轉(zhuǎn)函數(shù),小明是這樣思考的,由函數(shù)y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能確定這個函數(shù)的旋轉(zhuǎn)函數(shù).
請思考小明的方法解決下面問題:
(1)寫出函數(shù)y=x2﹣4x+3的旋轉(zhuǎn)函數(shù).
(2)若函數(shù)y=5x2+(m﹣1)x+n與y=﹣5x2﹣nx﹣3互為旋轉(zhuǎn)函數(shù),求(m+n)2020的值.
(3)已知函數(shù)y=2(x﹣1)(x+3)的圖象與x軸交于A、B兩點,與y軸交于點C,點A、B、C關(guān)于原點的對稱點分別是A1、B1、C1,試求證:經(jīng)過點A1、B1、C1的二次函數(shù)與y=2(x﹣1)(x+3)互為“旋轉(zhuǎn)函數(shù)”.
查看答案和解析>>
科目: 來源: 題型:
【題目】新學期開始時,某校九年級一班的同學為了增添教室綠色文化,打造溫馨舒適的學習環(huán)境,準備到一家植物種植基地購買A、B兩種花苗.據(jù)了解,購買A種花苗3盆,B種花苗5盆,則需210元;購買A種花苗4盆,B種花苗10盆,則需380元.
(1)求A、B兩種花苗的單價分別是多少元?
(2)經(jīng)九年級一班班委會商定,決定購買A、B兩種花苗共12盆進行搭配裝扮教室.種植基地銷售人員為了支持本次活動,為該班同學提供以下優(yōu)惠:購買幾盆B種花苗,B種花苗每盆就降價幾元,請你為九年級一班的同學預算一下,本次購買至少準備多少錢?最多準備多少錢?
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)學實踐與綜合課上,某興趣小組同學用航拍無人機對某居民小區(qū)的1、2號樓進行測高實踐,如圖為實踐時繪制的截面圖.無人機從地面點B垂直起飛到達點A處,測得1號樓頂部E的俯角為67°,測得2號樓頂部F的俯角為40°,此時航拍無人機的高度為60米,已知1號樓的高度為20米,且EC和FD分別垂直地面于點C和D,點B為CD的中點,求2號樓的高度.(結(jié)果精確到0.1)(參考數(shù)據(jù)sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E分別是線段BC、AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:△BDE≌△FAE;
(2)求證:四邊形ADCF為矩形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是邊BC的中點,連接AE、DE,分別交BD、AC于點P、Q,過點P作PF⊥AE交CB的延長線于F,下列結(jié)論:
①∠AED+∠EAC+∠EDB=90°,
②AP=FP,
③AE=AO,
④若四邊形OPEQ的面積為4,則該正方形ABCD的面積為36,
⑤CEEF=EQDE.
其中正確的結(jié)論有( )
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,交AB于點E,若CD=,則圖中陰影部分面積為( 。
A.4﹣B.2﹣C.2﹣πD.1﹣
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=﹣1,下列結(jié)論不正確的是( 。
A.b2>4acB.abc>0
C.a﹣c<0D.am2+bm≥a﹣b(m為任意實數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com