科目: 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,BD⊥AC,垂足為E,點(diǎn)F在BD的延長線上,且DF=DC,連接AF、CF.
(1)求證:∠BAC=2∠DAC;
(2)若AF=10,BC=4,求tan∠BAD的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會(huì)減少1件.設(shè)銷售單價(jià)增加元,每天售出件.
(1)請寫出與之間的函數(shù)表達(dá)式;
(2)當(dāng)為多少時(shí),超市每天銷售這種玩具可獲利潤2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時(shí)最大,最大值是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某體育看臺側(cè)面的示意圖如圖所示,觀眾區(qū)AC的坡度i為1:2,頂端C離水平地面AB的高度為10m,從頂棚的D處看E處的仰角α=18°30′,豎直的立桿上C、D兩點(diǎn)間的距離為4m,E處到觀眾區(qū)底端A處的水平距離AF為3m.
求:(1)觀眾區(qū)的水平寬度AB;
(2)頂棚的E處離地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,結(jié)果精確到0.1m)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB以1cm/s的速度向點(diǎn)B移動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)沿BC以2cm/s的速度向點(diǎn)C移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),△DPQ的面積為 cm2;
(2)在運(yùn)動(dòng)過程中△DPQ的面積能否為26cm2?如果能,求出t的值,若不能,請說明理由;
(3)運(yùn)動(dòng)過程中,當(dāng) A、P、Q、D四點(diǎn)恰好在同一個(gè)圓上時(shí),求t的值;
(4)運(yùn)動(dòng)過程中,當(dāng)以Q為圓心,QP為半徑的圓,與矩形ABCD的邊共有4個(gè)交點(diǎn)時(shí),直接寫出t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料:
已知實(shí)數(shù)m,n滿足(2m2+n2+1)(2m2+n2-1)=80,試求2m2+n2的值.
解:設(shè)2m2+n2=t,則原方程變?yōu)?/span>(t+1)(t-1)=80,整理得t2-1=80,t2=81,
所以t=土9,因?yàn)?/span>2m2+n2>0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個(gè)整休,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
(1)已知實(shí)數(shù)x、y,滿足(2x2+2y2+3)(2x2+2y2-3)=27,求x2+y2的值.
(2)已知Rt△ACB的三邊為a、b、c(c為斜邊),其中a、b滿足(a2+b2)(a2+b2-4)=5,求Rt△ACB外接圓的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)O作OD⊥AB,交BC的延長線于D,交AC于點(diǎn)E,F是DE的中點(diǎn),連接CF.
(1)求證:CF是⊙O的切線.
(2)若∠A=22.5°,求證:AC=DC.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙I是△ABC的內(nèi)切圓,切點(diǎn)分別是D、E、F.
(1)若∠B=50°,∠C=70°,則∠DFE的度數(shù)為 ;
(2)若∠DFE=50°,求∠A的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,⊙O過AC的中點(diǎn)D,DE切⊙O于點(diǎn)D,交BC于E.
(1)求證DE⊥BC;
(2)若⊙O的半徑為5,BE=2,求DE的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)A、B在半徑為3的⊙O上,以OA、AB為鄰邊作平行四邊形OCBA,作點(diǎn)B關(guān)于OA的對稱點(diǎn)D,連接CD,則CD的最大值為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O按逆時(shí)針旋轉(zhuǎn)90°所得的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo);
(3)△A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com