科目: 來源: 題型:
【題目】如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點(diǎn)E為AB的中點(diǎn),DE∥BC.
(1)求證:BD平分∠ABC;
(2)連接EC,若∠A=30°,DC=,求EC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ACE中,AC=CE,⊙O經(jīng)過點(diǎn)A,C,且與邊AE,CE分別交于點(diǎn)D,F,點(diǎn)B是劣弧AC上的一點(diǎn),且,連接AB,BC,CD.
(1)求證:△CDE≌△ABC;
(2)填空:若AC為⊙O的直徑,則當(dāng)△ACE的形狀為 時,四邊形ABCD為正方形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E是AB的中點(diǎn),點(diǎn)P從點(diǎn)E出發(fā),沿E→A→D→C移動至終點(diǎn)C.設(shè)P點(diǎn)經(jīng)過的路徑長為x,△CPE的面積為y,則下列圖象能大致反映y與x函數(shù)關(guān)系的是( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的是( 。
A. 了解我市市民知曉“禮讓行人”交通新規(guī)的情況,適合全面調(diào)查
B. 甲、乙兩人跳遠(yuǎn)成績的方差分別為,,說明乙的跳遠(yuǎn)成績比甲穩(wěn)定
C. 一組數(shù)據(jù)2,2,3,4的眾數(shù)是2,中位數(shù)是2.5
D. 可能性是1%的事件在一次試驗中一定不會發(fā)生
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方的邊長為,點(diǎn)是邊上一點(diǎn),是的中點(diǎn),過點(diǎn)作,且,連接,,過點(diǎn)作,分別交,于點(diǎn),.
(1)求證:;
(2)求證:;
(3)若,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某塑料廠生產(chǎn)一種家用塑料制品,它的成本是元件,售價是元件,年銷售量為萬件.為了獲得更好的效益,廠家準(zhǔn)備拿出一定的資金做廣告.根據(jù)測算,若每年投入廣告費(fèi)萬元,產(chǎn)品的年銷售量將是原銷售量的倍,且與之間滿足,具體數(shù)量如下表:
(萬元) | ||||||
(1)求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)如果把利潤看作是銷售總額減去成本費(fèi)用和廣告費(fèi)用,試求出年利潤(萬元)與廣告費(fèi)用(萬元)的函數(shù)關(guān)系式,并計算每年投入的廣告費(fèi)是多少萬元時,所獲得的利潤最大?
(3)如果廠家希望年利潤(萬元)不低于萬元,請你幫助廠家確定廣告費(fèi)的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的,兩點(diǎn),與軸交于點(diǎn),過點(diǎn)作軸,垂足為點(diǎn),,,點(diǎn)的縱坐標(biāo)為.
(1)求點(diǎn)的坐標(biāo);
(2)求該反比例函數(shù)和一次函數(shù)的解析式;
(3)連接,求四邊形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在由邊長為個單位長度的小正方形組成的網(wǎng)格中,已知點(diǎn),,,均為網(wǎng)格線的交點(diǎn).
(1)在網(wǎng)格中將繞點(diǎn)順時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的圖形;
(2)在網(wǎng)格中將放大倍得到,使與為對應(yīng)點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,,是的外接圓,連結(jié)OA、OB、OC,延長BO與AC交于點(diǎn)D,與交于點(diǎn)F,延長BA到點(diǎn)G,使得,連接FG.
備用圖
(1)求證:FG是的切線;
(2)若的半徑為4.
①當(dāng),求AD的長度;
②當(dāng)是直角三角形時,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點(diǎn),是一次函數(shù)圖象與反比例函數(shù)圖象的交點(diǎn),且一次函數(shù)與軸交于點(diǎn).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接,求的面積;
(3)在軸上有一點(diǎn),使得,求出點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com