科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點O為對角線BD的中點,點E為邊AD上一點,連接OE,將△DOE沿OE翻折得到△OEF,若OF⊥AD于點G,則OE=______.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲,乙兩人分別從,兩地相向而行,甲先走3分鐘后乙才開始行走,甲到達地后立即停止,乙到達地后立即以另一速度返回地,在整個行駛的過程中,兩人保持各自速度勻速行走,甲,乙兩人之間的距離(米)與乙出發(fā)的時間(分鐘)的函數(shù)關系如圖所示.當甲到達地時,則乙距離地的時間還需要________分鐘.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了測量重慶有名的觀景點南山大金鷹的大致高度,小南同學使用的無人機進行觀察,當無人機與大金鷹側面在同一平面,且距離水平面垂直高度GF為100米時,小南調(diào)整攝像頭方向,當俯角為45°時,恰好可以拍攝到金鷹的頭頂A點;當俯角為63°時,恰好可以拍攝到金鷹底座點E.已知大金鷹是雄踞在一人造石臺上,石臺側面CE長12.5米,坡度為1:0.75,石臺上方BC長10米,頭部A點位于BC中點正上方.則金鷹自身高度約( )米.(結果保留一位小數(shù),sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 6,AC = 8.點D是AB邊上一點,過點D作DE // BC,交邊AC于E.過點C作CF // AB,交DE的延長線于點F.
(1)如果,求線段EF的長;
(2)求∠CFE的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知線段,是線段上任意一點(不與點、重合),分別以、為邊,在的同側作等邊和,連接與交于點,連接.
當時,試求的正切值;
若線段是線段和的比例中項,試求這時的值;
記四邊形的面積為,當在線段上運動時,與是否成正比例,若成正比例,試求出比例系數(shù);若不成正比例,試說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與x軸交于點,B兩點,與y軸交于點,拋物線的頂點在直線上.
(1)求拋物線的解析式;
(2)點P為第一象限內(nèi)拋物線上的一個動點,過點P做軸交BC于點Q,求線段PQ長度的最大值,及此時點P的坐標;
(3)點M在x軸上,點N在拋物線的對稱軸上,若以點M,N,C,B為頂點的四邊形是平行四邊形,請直接寫出點M的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】(閱讀材料)
性質:在一個三角形中,各邊和它所對角的正弦的比相等.
即:
利用上述性質可以求解如下題目:
在中,若,,,求b.
解:在中,∵,
∴.
(問題解決)利用上述相關知識解決下列問題:
如圖,甲船以每小時海里的速度向正北方向航行.當甲船位于處時,乙船位于甲船的南偏西方向的處,且乙船從處沿北偏東方向勻速直線航行.經(jīng)過20分鐘后,甲船由處航行到處,乙船航行到甲船位置(即處)的南偏西方向的處,此時兩船相距海里,求乙船每小時航行多少海里.
查看答案和解析>>
科目: 來源: 題型:
【題目】在某場足球比賽中,球員甲在球門正前方點O處起腳射門,在不受阻擋的情況下,足球沿如圖所示的拋物線飛向球門中心線,當足球飛行的水平距離為2 m時,高度為,落地點A距O點12 m.已知點O距球門9 m,球門的橫梁高為2.44 m.
(1)飛行的足球能否射入球門?通過計算說明理由;
(2)若守門員乙站在球門正前方2 m處,他跳起時能摸到的最大高度為2.52 m,他能阻止此次射門嗎?并寫明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com