科目: 來源: 題型:
【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°﹣24°的桌面有利于學生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設計圖如圖1所示,AB可繞點A旋轉(zhuǎn),在點C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC=30cm.
(1)如圖2,當∠BAC=24°時,CD⊥AB,求支撐臂CD的長.
(2)如圖3,當∠BAC=12°,求AD的長(結(jié)果保留根號).
[參考數(shù)據(jù):sin24°=0.40,cos24°=0.91,tan24°=0.46,sin12°=0.20]
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于點,,與直線交于點,直線與軸交于點.
(1)求該拋物線的解析式.
(2)點是拋物線上第四象限上的一個動點,連接,,當的面積最大時,求點的坐標.
(3)將拋物線的對稱軸向左平移3個長度單位得到直線,點是直線上一點,連接,,若直線上存在使最大的點,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】我市東坡實驗中學準備開展“陽光體育活動”,決定開設足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學生對這五項活動的喜愛情況,隨機調(diào)查了名學生(每名學生必選且只能選擇這五項活動中的一種).
根據(jù)以上統(tǒng)計圖提供的信息,請解答下列問題:
(1) , .
(2)補全上圖中的條形統(tǒng)計圖.
(3)若全校共有名學生,請求出該校約有多少名學生喜愛打乒乓球.
(4)在抽查的名學生中,有小薇、小燕、小紅、小梅等名學生喜歡羽毛球活動,學校打算從小薇、小燕、小紅、小梅這名女生中,選取名參加全市中學生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母、、、代表)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點D在EG上運動,則△CDF周長的最小值為__.
查看答案和解析>>
科目: 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.
(1)求該型號自行車的進價和標價分別是多少元?
(2)若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,連接DE交線段OA于點F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點,求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在軸的負半軸、軸的正半軸上,點B在第二象限.將矩形OABC繞點O順時針旋轉(zhuǎn),使點B落在軸上,得到矩形ODEF,BC與OD相交于點M.若經(jīng)過點M的反比例函數(shù)y=(x<0)的圖象交AB于點N,的圖象交AB于點N, S矩形OABC=32,tan∠DOE=,,則BN的長為______________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點D的邊AC上,將邊OA沿OD折疊,點A的對應點為A'.若點A'到矩形較長兩對邊的距離之比為1:3,則點A'的坐標為__.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列說法正確的有____.(只填序號)
①邊數(shù)相等的兩個正多邊形一定相似;
②已知圓錐的底面半徑是4,母線長是5,則該圓錐的側(cè)面積是20π;
③3是的平方根;
④若一組數(shù)據(jù)3,x,4,5,6的眾數(shù)是3,則中位數(shù)是3;
⑤任意三角形的外接圓的圓心一定是三角形三條邊的垂直平分線的交點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com