科目: 來源: 題型:
【題目】如圖,拋物線與直線分別相交于,兩點(diǎn),且此拋物線與軸的一個(gè)交點(diǎn)為,連接,.已知,.
(1)求拋物線的解析式;
(2)在拋物線對稱軸上找一點(diǎn),使的值最大,并求出這個(gè)最大值;
(3)點(diǎn)為軸右側(cè)拋物線上一動點(diǎn),連接,過點(diǎn)作交軸于點(diǎn),問:是否存在點(diǎn)使得以,,為頂點(diǎn)的三角形與相似?若存在,請求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在中,,以為直徑的與邊,分別交于,兩點(diǎn),過點(diǎn)作于點(diǎn).
(1)判斷與的位置關(guān)系,并說明理由;
(2)求證:為的中點(diǎn);
(3)若,,求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖①,在四邊形中,,點(diǎn)是的中點(diǎn),若是的平分線,試判斷,,之間的等量關(guān)系.
解決此問題可以用如下方法:延長交的延長線于點(diǎn),易證得到,從而把,,轉(zhuǎn)化在一個(gè)三角形中即可判斷.
,,之間的等量關(guān)系________;
(2)問題探究:如圖②,在四邊形中,,與的延長線交于點(diǎn),點(diǎn)是的中點(diǎn),若是的平分線,試探究,,之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀以下材料:
對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.
對數(shù)的定義:一般地,若(且),那么叫做以為底的對數(shù),記作,比如指數(shù)式可以轉(zhuǎn)化為對數(shù)式,對數(shù)式,可以轉(zhuǎn)化為指數(shù)式.
我們根據(jù)對數(shù)的定義可得到對數(shù)的一個(gè)性質(zhì):
(,,,),理由如下:
設(shè),,則,,
∴,由對數(shù)的定義得
又∵
∴
根據(jù)閱讀材料,解決以下問題:
(1)將指數(shù)式轉(zhuǎn)化為對數(shù)式________;
(2)求證:(,,,)
(3)拓展運(yùn)用:計(jì)算________.
查看答案和解析>>
科目: 來源: 題型:
【題目】安順市某商貿(mào)公司以每千克40元的價(jià)格購進(jìn)一種干果,計(jì)劃以每千克60元的價(jià)格銷售,為了讓顧客得到更大的實(shí)惠,現(xiàn)決定降價(jià)銷售,已知這種干果銷售量(千克)與每千克降價(jià)(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:
(1)求與之間的函數(shù)關(guān)系式;
(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價(jià)多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸分別交于、兩點(diǎn),與軸交于點(diǎn),.則由拋物線的特征寫出如下結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是()
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點(diǎn)C和點(diǎn)D為圓心,大于為半徑作弧,兩弧交于點(diǎn)M,N;②作直線MN,且恰好經(jīng)過點(diǎn)A,與CD交于點(diǎn)E,連接BE,則下列說法錯(cuò)誤的是( )
A.B.C.若AB=4,則D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中, AB=AC=10,線段BC在軸上,BC=12,點(diǎn)B的坐標(biāo)為(-3,0),線段AB交軸于點(diǎn)E,過A作AD⊥BC于D,動點(diǎn)P從原點(diǎn)出發(fā),以每秒3個(gè)單位的速度沿軸向右運(yùn)動,設(shè)運(yùn)動的時(shí)間為秒.
(1)當(dāng)△BPE是等腰三角形時(shí),求的值;
(2)若點(diǎn)P運(yùn)動的同時(shí),△ABC以B為位似中心向右放大,且點(diǎn)C向右運(yùn)動的速度為每秒2個(gè)單位,△ABC放大的同時(shí)高AD也隨之放大,當(dāng)以EP為直徑的圓與動線段AD所在直線相切時(shí),求的值和此時(shí)點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如果三角形的兩個(gè)內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對角線AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com