如圖平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(-3,-1),點(diǎn)B的坐標(biāo)為(2,-4).
(1)請(qǐng)你畫出線段AB;
(2)怎樣平移線段AB恰好使點(diǎn)A落在x軸上,B點(diǎn)也正好落在y軸上;
(3)求出平移線段AB后與坐標(biāo)軸圍成的三角形的面積.
分析:(1)根據(jù)平面直角坐標(biāo)系找出點(diǎn)A、B的位置,然后連接即可得解;
(2)根據(jù)x軸上的點(diǎn)的縱坐標(biāo)為0,y軸上的點(diǎn)的橫坐標(biāo)為0,確定平移方案;
(3)根據(jù)圖形求出平移后的圖形OA′、OB′的長(zhǎng)度,然后利用三角形的面積公式列式進(jìn)行計(jì)算即可得解.
解答:解:(1)如圖所示,線段AB即為所求作的線段;

(2)∵點(diǎn)A的坐標(biāo)為(-3,-1),點(diǎn)B的坐標(biāo)為(2,-4),
∴向上平移1個(gè)單位,點(diǎn)A在x軸上,向左邊平移2個(gè)單位,點(diǎn)B在y軸上,
所以,平移方案為先上平移1個(gè)單位,再向左邊平移2個(gè)單位;

(3)由圖可知,OA′=5,OB′=3,
所以,平移線段AB后與坐標(biāo)軸圍成的三角形的面積=
1
2
×5×3=
15
2
點(diǎn)評(píng):本題考查了利用平移變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu),準(zhǔn)確找出對(duì)應(yīng)點(diǎn)的位置是解題的關(guān)鍵,還考查了x軸上的點(diǎn)的縱坐標(biāo)為0,y軸上的點(diǎn)的橫坐標(biāo)為0的知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖平面直角坐標(biāo)系中,拋物線y=-
1
2
x2+
3
2
x+2交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C.
(1)求證:△ABC為直角三角形;
(2)直線x=m(0<m<4)在線段OB上移動(dòng),交x軸于點(diǎn)D,交拋物線于點(diǎn)E,交BC于點(diǎn)F.求當(dāng)m為何值時(shí),EF=DF?
(3)連接CE和BE后,對(duì)于問題“是否存在這樣的點(diǎn)E,使△BCE的面積最大”,小紅同學(xué)認(rèn)為:“當(dāng)E為拋物線的頂點(diǎn)時(shí),△BCE的面積最大.”她的觀點(diǎn)是否正確?提出你的見解,若△BCE的面積存在最大值,請(qǐng)求出點(diǎn)E的坐標(biāo)和△BCE的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖平面直角坐標(biāo)系中,點(diǎn)A(1,n)和點(diǎn)B(m,1)為雙曲線y=
kx
第一象限上兩點(diǎn),連接精英家教網(wǎng)OA、OB.
(1)試比較m、n的大;
(2)若∠AOB=30°,求雙曲線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)A、B、C的坐標(biāo)分別為A(2,-1),B(1,-3),C(4,-4),
請(qǐng)解答下列問題:
(1)把△ABC向左平移4個(gè)單位,再向上平移3個(gè)單位,恰好得到△A1B1C1試寫出△A1B1C1三個(gè)頂點(diǎn)的坐標(biāo);
(2)在直角坐標(biāo)系中畫出△A1B1C1
(3)求出線段AA1的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖平面直角坐標(biāo)系中畫出函數(shù)y=-
1
2
x+3的圖象.
(1)在圖象上標(biāo)出橫坐標(biāo)為-4的點(diǎn)A,并寫出它的坐標(biāo);
(2)若此圖象向上平移三個(gè)單位長(zhǎng)度,得到的函數(shù)是
y=-
1
2
x+6
y=-
1
2
x+6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、已知在如圖平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(-3,-2),B(-5,0),C(-2,4),
(1)在平面直角坐標(biāo)系中畫出△ABC;
(2)將△ABC向右平移6個(gè)單位長(zhǎng)度,畫出平移后的△A′B′C′,并寫出對(duì)應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案