【題目】將一副三角板按圖甲的位置放置.
(1)那么∠AOD和∠BOC相等嗎?請說明理由;
(2)試猜想∠AOC和∠BOD在數(shù)量上有何關(guān)系?請說明理由;
(3)若將這副三角板按圖乙所示擺放,三角板的直角頂點重合在點O處.上述關(guān)系還成立嗎?請說明理由.
【答案】(1)∠AOD和∠BOC相等;理由見解析;(2)∠AOC和∠BOD互補;理由見解析;(3)成立.理由見解析.
【解析】
(1)根據(jù)角的和差關(guān)系解答,
(2)利用周角的定義解答;
(3)根據(jù)同角的余角相等解答∠AOD和∠BOC的關(guān)系,根據(jù)圖形,表示出∠BOD+∠AOC=∠BOD+∠AOB+∠COB整理即可得到原關(guān)系仍然成立.
解:(1)∠AOD和∠BOC相等,
∵∠AOB=∠COD=90°,
∴∠AOB+∠BOD=∠COD+∠BOD,
∴∠AOD=∠COB;
(2)∠AOC和∠BOD互補
∵∠AOB=∠COD=90°,
∴∠BOD+∠AOC=360°-90°-90°=180°,
∴∠AOC和∠BOD互補.
⑶成立.
∵∠AOB=∠COD=90°,
∴∠AOB-∠BOD=∠COD-∠BOD,
∴∠AOD=∠COB;
∵∠AOB=∠COD=90°,
∴∠BOD+∠AOC=∠BOD+∠AOB+∠COB
=90°+∠BOD+∠COB
=90°+∠DOC
=90°+90°
=180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小莉手中有塊周長為100cm的長方形硬紙片,其中長比寬多10cm.
(1)求長方形的面積;
(2)小莉想用這塊長方形的硬紙片,沿著邊的方向裁出一塊長與寬的比為5:4,面積為720cm2的新紙片另作他用,請判斷小莉能否成功,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為CD上一點,連接AE,BD,且AE,BD相交于點F,DE:EC=2:3,則S△DEF:S△ABF等于( )
A.4:25
B.4:9
C.9:25
D.2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三沙市一艘海監(jiān)船某天在黃巖鳥P附近海域由南向北巡航,某一時刻航行到A處,測得該島在北偏東30°方向,海監(jiān)船以20海里/時的速度繼續(xù)航行,2小時后到達B處,測得該島在北偏東75°方向,求此時海監(jiān)船與黃巖島P的距離BP的長.(參考數(shù)據(jù): ≈1.414,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù) 的部分圖像如圖所示,圖像過點 ,對稱軸為直線 ,下列結(jié)論:(1) ;(2) ;(3)若點 、點 、點 在該函數(shù)圖像上,則 ;(4)若方程 的兩根為 和 ,且 ,則 .其中正確結(jié)論的序號是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長江汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈A射線自AM順時針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動的速度是a°/秒,燈B轉(zhuǎn)動的速度是b°/秒,且a、b滿足|a-3b|+(a+b-4)=0.假定這一帶長江兩岸河堤是平行的,即PQ∥MN,且∠BAN=45°
(1)求a、b的值;
(2)若燈B射線先轉(zhuǎn)動20秒,燈A射線才開始轉(zhuǎn)動,在燈B射線到達BQ之前,A燈轉(zhuǎn)動幾秒,兩燈的光束互相平行?
(3)如圖2,兩燈同時轉(zhuǎn)動,在燈A射線到達AN之前.若射出的光束交于點C,過C作CD⊥AC交PQ于點D,則在轉(zhuǎn)動過程中,∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請求出其數(shù)量關(guān)系;若改變,請求出其取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一直尺與一缺了一角的等腰直角三角板如圖擺放,若∠1=115°,則∠2的度數(shù)為( 。
A.65°B.70°C.75°D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物 是否需要挪走,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com