【題目】為拓寬銷售渠道,某水果商店計劃將146個柚子和400個橙子裝入大、小兩種禮箱進行出售,其中每件小禮箱裝2個柚子和4個橙子;每件大禮箱裝3個柚子和9個橙子.要求每件禮箱都裝滿,柚子恰好全部裝完,橙子有剩余,設小禮箱的數量為x件.
(1)大禮箱的數量為________件(用含x的代數式表示).
(2)若橙子剩余12個,則需要大、小兩種禮箱共多少件?
(3)由于橙子有剩余,則小禮箱至少需要________件.
【答案】(1) (146-2x);(2)需要大,小兩種禮箱共57件;(3)小禮箱至少需要22件.
【解析】
(1)設小禮箱的數量為x件,則小禮箱共裝2x個柚子,可得大禮箱共裝(146-2x)個柚子,即可表示大禮箱的數量;
(2)根據裝入大、小兩種禮箱的橙子+剩余的12個橙子=400個,列方程求出x=25,再求大禮箱得數量,即可求出答案;
(3)設小禮箱至少需要x個,則大禮箱需要y件,根據題意得,再討論x的取值即可.
解:(1)設小禮箱的數量為x件,則小禮箱共裝2x個柚子,可得大禮箱共裝(146-2x)個柚子,則大禮箱的數量為 (146-2x),
故答案為 (146-2x);
(2)解:
根據題意列方程得:4x+9× (146-2x)+12=400,
解得x=25
∴ (146-2x)= (146-2×25)=32,
∴25+32=57
答:若橙子剩余數量為12個,則需要大,小兩種禮箱共57件.
(3)設小禮箱至少需要x個,則大禮箱需要y件,根據題意得
由①得:
將③代入②得:4x+3(146-2x)<400
解之:x>20
∵x,y為整數,
∴當x=20時, , 不符合題意;
當x=21時, , 不符合題意;
當x=22時, , 符合題意.
∴小禮箱至少需要22件.
科目:初中數學 來源: 題型:
【題目】某校計劃組織師生共300人參加一次大型公益活動,如果租用6輛大客車和5輛小客車,恰好全部坐滿,已知每輛大客車的乘客座位數比小客車多17個.
(1)求每輛大客車和每輛小客車的乘客座位數;
(2)由于最后參加活動的人數增加了30人,學校決定調整租車方案,在保持租用車輛總數不變的情況下,且所有參加活動的師生都有座位,求租用小客車數量的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是甲、乙兩車在某時段速度隨時間變化的圖像;下列說法:
①乙車前 4 秒行駛的路程為 48 米;
②在 0 到 8 秒內甲車的速度每秒增加 4 米;
③兩車到第 3 秒時行駛的路程相等;
④在 4 到 8 秒內甲車的速度都大于乙車的速度.
其中正確的有( )
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某網店以每件80元的進價購進某種商品,原來按每件100元的售價出售,一天可售出50件;后經市場調查,發(fā)現(xiàn)這種商品每件的售價每降低2元,其銷售量可增加10件.
(1)該網店銷售該商品原來一天可獲利潤 元.
(2)設后來該商品每件售價降價元,網店一天可獲利潤元.
①若此網店為了盡可能增加該商品的銷售量,且一天仍能獲利1080元,則每件商品的售價應降價多少元?
②求與之間的函數關系式,當該商品每件售價為多少元時,該網店一天所獲利潤最大?并求最大利潤值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學“我最喜愛的體育項目”進行了一次調查統(tǒng)計,下面是他通過收集數據后,繪制的兩幅不完整的統(tǒng)計圖.請你根據圖中提供的信息,解答以下問題:
(1)該班共有_____名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數為_____;
(4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】1930年,德國漢堡大學的學生考拉茲,曾經提出過這樣一個數學猜想:對于每一個正整數,如果它是奇數,則對它乘3再加1;如果它是偶數,則對它除以2.如此循環(huán),最終都能夠得到1.這一猜想后來成為著名的“考拉茲猜想”,又稱“奇偶歸一猜想”.雖然這個結論在數學上還沒有得到證明,但舉例驗證都是正確的,例如:取正整數5,最少經過下面5步運算可得1,即:如果正整數最少經過6步運算可得到1,則的值為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據調查結果繪制了如圖不完整的頻數分布表和扇形統(tǒng)計圖:
運動項目 | 頻數人數 |
羽毛球 | 30 |
籃球 | a |
乒乓球 | 36 |
排球 | b |
足球 | 12 |
請根據以上圖表信息解答下列問題:
頻數分布表中的______,______;
在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為______度;
全校有多少名學生選擇參加乒乓球運動?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為實施鄉(xiāng)村振興戰(zhàn)略,解決某山區(qū)老百娃出行難的問題,當地政府決定修建一條高速公路,其中一段長為146米的山體隧道貫穿工程由甲、乙兩個工程隊負責施工,甲工程隊獨立工作2天后,乙工程隊加入,兩個工程隊又聯(lián)合工作了1天,這3天共掘進26米,已知甲工程隊平均每天比乙工程隊多掘進2米.
(1)求甲、乙兩個工程隊平均每天分別掘進多少米?
(2)若甲、乙兩個工程隊按此施工速度進行隧道貫穿工程,剩余工程由這兩個工程隊聯(lián)合施工,求完成這項隧道貫穿工程一共需要多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=x﹣3與反比例函數y=的圖象相交于點A(4,n),與x軸相交于點B.
(1)求反比例函數的表達式;
(2)將線段AB沿x軸向右平移5個單位到DC,設DC與雙曲線交于點E,求點E到x軸的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com