【題目】如圖,一次函數(shù)的圖象分別交軸、軸于點、點,與反比例函數(shù)的圖象在第四象限的相交于點,并且軸于點,軸于點,已知,且
求上述一次函數(shù)與反比例函數(shù)的表達式;
求一次函數(shù)與反比例函數(shù)的另一個交點坐標(biāo).
【答案】(1),(2).
【解析】
(1)令一次函數(shù)解析式中x=0,求出對應(yīng)的y值,確定出D的坐標(biāo),得到OD的長,再由B的坐標(biāo)得到OB的長,由OD+OB求出BD的長,在直角三角形BDP中,利用兩直角邊乘積的一半表示出三角形的面積,將BD及已知的面積代入求出BP的長,確定出P的坐標(biāo),由P為一次函數(shù)與反比例函數(shù)的交點,將P的坐標(biāo)代入一次函數(shù)解析式中求出k的值,確定出一次函數(shù)解析式,將P的坐標(biāo)代入反比例函數(shù)解析式中求出m的值,確定出反比例函數(shù)解析式;(2)將一次函數(shù)解析式與反比例函數(shù)解析式聯(lián)立組成方程組,求出方程組的解即可得到兩函數(shù)的另一個交點.
解:令一次函數(shù)解析式中,解得,
∴坐標(biāo)為,即,
又,即,
∴,
∵,
∴,
∴的坐標(biāo)為,
將,代入一次函數(shù)解析式得:,
解得:,
∴一次函數(shù)解析式為,
將,代入反比例解析式得:,
解得:,
∴反比例函數(shù)的表達式為;
聯(lián)立兩個關(guān)系式得:,
消去得:,
整理得:,
解得:,,
經(jīng)檢驗是原方程的解,
∴,,
∴一次函數(shù)與反比例函數(shù)交點為或,
則一次函數(shù)與反比例函數(shù)的另一交點坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,關(guān)于的分式方程.
(1)當(dāng),時,求分式方程的解;
(2)當(dāng)時,求為何值時分式方程無解:
(3)若,且、為正整數(shù),當(dāng)分式方程的解為整數(shù)時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一個長為、寬為的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后拼成一個正方形(如圖1).
(1)請用兩種不同的方法求圖2中陰影部分的面積(直接用含,的代數(shù)式表示)
方法1:________,方法2:____;
(2)根據(jù)(1)中結(jié)論,請你寫出下列三個代數(shù)式,,間的等量關(guān)系:____;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:己知實數(shù)、滿足,,請求出的值:
(4)已知,請求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是( )
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有一座拱橋圓弧形,它的跨度為米,拱高為米,當(dāng)洪水泛濫到跨度只有米時,就要采取緊急措施,若拱頂離水面只有米,即米時,試通過計算說明是否需要采取緊急措施?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)八(2)班舉行文藝晚會,桌子擺成如圖所示兩直排(圖中的,),桌面上擺滿了橘子,桌面上擺滿了糖果,站在處的學(xué)生小明先拿橘子再拿糖果,然后到處座位上,請你幫助他設(shè)計一條行走路線,使其所走的總路程最短.(要求:簡略敘述作圖過程,實走路線用實線,其它輔助線用虛線)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知中,,,垂足為,,則___.
(2)若把(1)中改為,其它條件不變,請用含的式子表示,并證明 你的結(jié)論.
(3)如圖2,四邊形中,,點在四邊形內(nèi)部,在中,,且,連接,,求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com