【題目】如圖,拋物線的圖象經(jīng)過點(diǎn),對(duì)稱軸為直線,一次函數(shù)的圖象經(jīng)過點(diǎn),交軸于點(diǎn),交拋物線于另一點(diǎn),點(diǎn)、位于點(diǎn)的同側(cè).
求拋物線的解析式;
若,求一次函數(shù)的解析式;
在的條件下,當(dāng)時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn),使得同時(shí)與軸和直線都相切,如果存在,請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由.
【答案】(1);(2)或;(3)見解析.
【解析】
(1)根據(jù)拋物線的對(duì)稱軸為x=1可求出m的值,再將點(diǎn)A的坐標(biāo)代入拋物線的解析式中求出n值,此題得解;
(2)根據(jù)P、A、B三點(diǎn)共線以及PA:PB=3:1結(jié)合點(diǎn)A的坐標(biāo)即可得出點(diǎn)B的縱坐標(biāo),將其代入拋物線解析式中即可求出點(diǎn)B的坐標(biāo),再根據(jù)點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出直線AP的解析式;
(3)假設(shè)存在,設(shè)出點(diǎn)C的坐標(biāo),依照題意畫出圖形,根據(jù)角的計(jì)算找出∠DCF=∠EPF,再通過解直角三角形找出關(guān)于r的一元一次方程,解方程求出r值,將其代入點(diǎn)C的坐標(biāo)中即可得出結(jié)論.
解:∵拋物線的對(duì)稱軸為,
∴,解得:.
將點(diǎn)代入中,
,解得:,
∴拋物線的解析式為.
∵、、三點(diǎn)共線,,且點(diǎn)、位于點(diǎn)的同側(cè),
∴,
又∵點(diǎn)為軸上的點(diǎn),點(diǎn),
∴.
當(dāng)時(shí),有,
解得:,,
∴點(diǎn)的坐標(biāo)為或.
將點(diǎn)、代入中,
,解得:;
將點(diǎn)、代入中,
,解得:.
∴一次函數(shù)的解析式或.
假設(shè)存在,設(shè)點(diǎn)的坐標(biāo)為.
∵,
∴直線的解析式為.
當(dāng)時(shí),,
解得:,
∴點(diǎn)的坐標(biāo)為,
當(dāng)時(shí),,
∴點(diǎn)的坐標(biāo)為.
令與直線的切點(diǎn)為,與軸的切點(diǎn)為,拋物線的對(duì)稱軸與直線的交點(diǎn)為,連接,如圖所示.
∵,,
∴.
在中,,,
∴,
解得:或.
故當(dāng)時(shí),拋物線的對(duì)稱軸上存在點(diǎn),使得同時(shí)與軸和直線都相切,點(diǎn)的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】滿足下列條件的△ABC不是直角三角形的是()
A. BC=1,AC=2,AB=
B. BC=1,AC=2,AB=
C. BC:AC:AB=3:4:5
D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,半徑OC垂直AB,D為弧AC上任意一點(diǎn),E為弦BD上一點(diǎn),且BE=AD
(1)試判斷△CDE的形狀,并加以證明.
(2)若∠ABD=15°,AO=4,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線在平面直角坐標(biāo)系中的位置如圖所示,則下列結(jié)論:
①;②;③;④.
其中,正確的結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AB=BC,∠B=60°,E是BC邊上一點(diǎn).
(1)如圖1,若E是BC的中點(diǎn),∠AED=60°,求證:CE=CD;
(2)如圖2,若∠EAD=60°,求證:△AED是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為正方形外的一點(diǎn),,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)旋轉(zhuǎn)至點(diǎn),且,則的度數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)三班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào)).
根據(jù)以上信息,解答下列問題:
(1)該班共有________名學(xué)生.
(2)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺部分補(bǔ)充完整.
(3)該班學(xué)生所穿校服型號(hào)的眾數(shù)為__________型號(hào),中位數(shù)為_________型號(hào).
(4)若該校九年級(jí)有學(xué)生500人,請(qǐng)你估計(jì)穿175型號(hào)校服的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在坐標(biāo)平面中,A(-6,0)、B(6,0),點(diǎn) C 在 y 軸正半軸上,且∠ACB=90.
⑴求點(diǎn) C 的坐標(biāo);
⑵如圖2,點(diǎn) P 為線段 BC 上一點(diǎn),連接 PA,設(shè)點(diǎn) P 的橫坐標(biāo)為 m,△PAC 的面積為 S,用含 m 的代數(shù)式來表示 S;
⑶如圖3,在⑵的條件下,過點(diǎn) B 向 PA 引垂線,垂足為 E,延長(zhǎng) BE、AC 相交于點(diǎn) F,連接PF,若 PF=3,求 m 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com