【題目】觀察下面三行數(shù):
﹣2,4,﹣8,16,﹣32,64 …①
0,6,﹣6,18,﹣30,66…②
﹣1,2,﹣4,8,﹣16,32…③
(1)第①、②、③行第n個數(shù)分別為 ; ; .
(2)取每行數(shù)的第九個數(shù),計算這三個數(shù)的和.
【答案】(1)(﹣2)n;(﹣2)n+2;(﹣2)n;(2)﹣1278
【解析】
(1)第一行的第n個數(shù)用(﹣2)n表示,第二行的第n個數(shù)用(﹣2)n+2表示,第三行的第n個數(shù)用(﹣2)n表示;
(2)根據(jù)(1)中的規(guī)律求得每行數(shù)的第九個數(shù),計算這三個數(shù)的和即可.
解:(1)∵第1行中,第1個數(shù)=(﹣2)1=﹣2,第2個數(shù)=(﹣2)2=4,第3個數(shù)=(﹣2)3=﹣8,…,故第n個數(shù)=(﹣2)n.
第2行數(shù)等于第1行相應(yīng)的數(shù)加2;
第3行數(shù)等于第1行相應(yīng)的數(shù)的一半;
故答案為:(﹣2)n;(﹣2)n+2;(﹣2)n;
(2)當(dāng)n=9時,(﹣2)9=﹣512;(﹣2)9+2=﹣510;×(﹣2)9=﹣256;
∴這三個數(shù)的和=﹣1278.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AC相切于點P.
(1)求證:BP平分∠ABC;
(2)若PC=1,AP=3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
小明遇到這樣一個問題:已知:在△ABC中,AB,BC,AC三邊的長分別為、、,求△ABC的面積.
小明是這樣解決問題的:如圖1所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出△ABC的面積他把這種解決問題的方法稱為構(gòu)圖法.
請回答:
(1)①圖1中△ABC的面積為________;
②圖1中過O點畫一條線段MN,使MN=2AB,且M、N在格點上.
(2)圖2是一個6×6的正方形網(wǎng)格(每個小正方形的邊長為1).利用構(gòu)圖法在圖2中畫出三邊長分別為、2、的格點△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為1的小圓與半徑為2的大圓,有一個公共點與數(shù)軸上的原點重合,兩圓在數(shù)軸上做無滑動的滾動,小圓的運動速度為每秒π個單位,大圓的運動速度為每秒2π個單位,(1)若小圓不動,大圓沿數(shù)軸來回滾動,規(guī)定大圓向右滾動的時間記為正數(shù),向左滾動時間即為負(fù)數(shù),依次滾動的情況錄如下(單位:秒):﹣1,+2,﹣4,﹣2,+3,+6
(1)第 次滾動后,大圓與數(shù)軸的公共點到原點的距離最遠(yuǎn);
(2)當(dāng)大圓結(jié)束運動時,大圓運動的路程共有多少?此時兩圓與數(shù)軸重合的點之間的距離是多少?(結(jié)果保留π)
(3)若兩圓同時在數(shù)軸上各自沿著某一方向連續(xù)滾動,滾動一段時間后兩圓與數(shù)軸重合的點之間相距9π,求此時兩圓與數(shù)軸重合的點所表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一樓房AB后有一假山,山坡斜面CD與水平面夾角為30°,坡面上點E處有一亭子,測得假山坡腳C與樓房水平距離BC=10米,與亭子距離CE=20米,小麗從樓房頂測得點E的俯角為45°.求樓房AB的高(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù),,在數(shù)軸上的位置如下圖所示:
(1)若,求的值.
(2)若,,,且,,對應(yīng)的點分別為,,,問在數(shù)軸上是否存在一點,使與的距離是與的距離的3倍.若存在,請求出點對應(yīng)的有理數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,E為正方形ABCD的邊BC上一點,F為邊BA延長線上一點,且CE=AF.
(1)求證:DE⊥DF;
(2)如圖2,若點G為邊AB上一點,且∠BGE=2∠BFE,△BGE的周長為16,求四邊形DEBF的面積;
(3)如圖3,在(2)的條件下,DG與EF交于點H,連接CH且CH=5,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于有理數(shù),定義一種新運算“”,請仔細(xì)觀察下列各式中的運算規(guī)律:12==2,
,
回答下列問題:
(1)計算:=_____;=_____.
(2)若a≠b,則_____(填入“”或“”
(3)若有理數(shù)a,b的取值范圍在數(shù)軸上的對應(yīng)點如圖所示,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列一段文字,再解答問題
已知在平面內(nèi)有兩點,,其兩點間的距離公式為,同時,當(dāng)兩點所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間距離公式可簡化為或
已知點,,試求A,B兩點間的距離;
已知點A,B在平行于y軸的直線上,點A的縱坐標(biāo)為5,點B的縱坐標(biāo)為,試求A,B兩點間的距離;
已知點,,判斷線段AB,BC,AC中哪兩條是相等的?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com