【題目】如圖所示,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)①當AM為何值時,四邊形AMDN是矩形?
②當AM為何值時,四邊形AMDN是菱形?
【答案】(1)見解析;(2)①當AM=1時,四邊形AMDN是矩形,②當AM=2時,四邊形AMDN是菱形.
【解析】試題分析:(1)利用菱形的性質可得ND∥AM,根據平行線的性質可得∠NDE=∠MAE,∠DNE=∠AME,利用AAS證明△NDE≌△MAE,根據全等三角形的性質可得ND=MA,由一組對邊平行且相等的四邊形為平行四邊形即可的四邊形AMDN是平行四邊形;(2)①有(1)可知四邊形AMDN是平行四邊形,利用有一個角為直角的平行四邊形為矩形即∠DMA=90°,所以AM=AD=1時即可;②當平行四邊形AMND的鄰邊AM=DM時,四邊形為菱形,利用已知條件再證明△AMD是等邊三角形即可.
試題解析:
(1)證明:∵四邊形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME.
又∵點E是AD邊的中點,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四邊形AMDN是平行四邊形.
(2)①當AM=1時,四邊形AMDN是矩形.
理由如下:
∵四邊形ABCD是菱形,
∴AB=AD=2.
當AM=1=AD時,可得∠ADM=30°.
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四邊形AMDN是矩形.
②當AM=2時,四邊形AMDN是菱形.
理由如下:
∵四邊形ABCD是菱形,
∴AB=AD=2.
∵AM=2,
∴AM=AD=2,
又∠DAM=60°,
∴△AMD是等邊三角形,
∴AM=DM,
∴平行四邊形AMDN是菱形.
科目:初中數學 來源: 題型:
【題目】某文具商店銷售功能相同的兩種品牌的計算器,購買2個A品牌和3個B品牌的計算器共需156元;購買3個A品牌和1個B品牌的計算器共需122元。
(1)求這兩種品牌計算器的單價;
(2)學校開學前夕,該商店對這兩種計算器開展了促銷活動,具體辦法如下:A品牌計算器按原價的八折銷售,B品牌計算器5個以上超出部分按原價的七折銷售。設購買個x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關于x的函數關系式;
(3)小明準備聯系一部分同學集體購買同一品牌的計算器,若購買計算器的數量超過5個,購買哪種品牌的計算器更合算?請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學積極倡導陽光體育運動,提高中學生身體素質,開展跳繩比賽,下表為該校6年1班40人參加跳繩比賽的情況,若標準數量為每人每分鐘100個.
(1)求6年1班40人一分鐘內平均每人跳繩多少個?
(2)規(guī)定跳繩超過標準數量,每多跳1個繩加3分;規(guī)定跳繩未達到標準數量,每少跳1個繩,扣1分,若班級跳繩總積分超過250分,便可得到學校的獎勵,通過計算說明6年1班能否得到學校獎勵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=640,∠ABC和∠ACD的平分線交于點A1,得∠A1;∠A1BC和∠A1CD的平分線交于點A2,得∠A2;∠A2BC和∠A2CD的平分線交于點A3,則∠A5= ______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,點D,F分別是AC,AB的中點,CE∥DB,BE∥DC,AD=3,DF=1,四邊形DBEC面積是_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是直線AD上兩動點,且AE=DF,CF所在直線與對角線BD所在直線交于點G,連接AG,直線AG交BE于點H.
(1)如圖1,當點E、F在線段AD上時,求證:∠DAG=∠DCG;
(2)如圖1,猜想AG與BE的位置關系,并加以證明;
(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個行駛過程中,甲、乙兩車離開A城的距離y(km)與行駛的時間t(h)之間的函數關系如圖所示.
(1)求乙車離開A城的距離y關于t的函數解析式;
(2)求乙車的速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當﹣1<x<3時,y>0,其中正確的個數為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com