【題目】如圖,一塊余料ABCD,AD∥BC,現(xiàn)進(jìn)行如下操作:以點(diǎn)B為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交BA,BC于點(diǎn)G,H;再分別以點(diǎn)G,H為圓心,大于GH的長(zhǎng)為半徑畫(huà)弧,兩弧在∠ABC內(nèi)部相交于點(diǎn)O,畫(huà)射線BO,交AD于點(diǎn)E.

(1)求證:AB=AE;
(2)若∠A=100°,求∠EBC的度數(shù).

【答案】
(1)

證明:∵AD∥BC,

∴∠AEB=∠EBC.

由BE是∠ABC的角平分線,

∴∠EBC=∠ABE,

∴∠AEB=∠ABE,

∴AB=AE;


(2)

解:由∠A=100°,∠ABE=∠AEB,得

∠ABE=∠AEB=40°.

由AD∥BC,得

∠EBC=∠AEB=40°.


【解析】(1)根據(jù)角平分線的性質(zhì),可得∠AEB=∠EBC,根據(jù)角平分線的性質(zhì),可得∠EBC=∠ABE,根據(jù)等腰三角形的判定,可得答案;
(2)根據(jù)三角形的內(nèi)角和定理,可得∠AEB,根據(jù)平行線的性質(zhì),可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在拋物線y=x2﹣2x+2上運(yùn)動(dòng).過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,以AC為對(duì)角線作矩形ABCD,連結(jié)BD,則對(duì)角線BD的最小值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC為半徑,作⊙A,交AB于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)E作AB的平行線EF交⊙A于點(diǎn)F,連接AF,BF,DF.

(1)求證:△ABC≌△ABF;
(2)當(dāng)∠CAB等于多少度時(shí),四邊形ADFE為菱形?請(qǐng)給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.

(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說(shuō)明理由
(3)把拋物線與直線y=x的交點(diǎn)稱為拋物線的不動(dòng)點(diǎn).若將(1)中拋物線平移,使其頂點(diǎn)為(m,2m),當(dāng)m滿足什么條件時(shí),平移后的拋物線總有不動(dòng)點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點(diǎn)E,連接EO并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)D,點(diǎn)F為BC的中點(diǎn),連接EF.

(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為菱形,對(duì)角線AC,BD相交于點(diǎn)E,F(xiàn)是邊BA延長(zhǎng)線上一點(diǎn),連接EF,以EF為直徑作⊙O,交DC于D,G兩點(diǎn),AD分別于EF,GF交于I,H兩點(diǎn).

(1)求∠FDE的度數(shù);
(2)試判斷四邊形FACD的形狀,并證明你的結(jié)論;
(3)當(dāng)G為線段DC的中點(diǎn)時(shí),
①求證:FD=FI;
②設(shè)AC=2m,BD=2n,求⊙O的面積與菱形ABCD的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長(zhǎng)五個(gè)維度進(jìn)行了綜合評(píng)價(jià).評(píng)價(jià)小組在選取的某中學(xué)七年級(jí)全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時(shí)間,并繪制成如下不完整的統(tǒng)計(jì)圖.
根據(jù)上述信息,解答下列問(wèn)題:
(1)本次抽取的學(xué)生人數(shù)是 ;扇形統(tǒng)計(jì)圖中的圓心角α等于 ;補(bǔ)全統(tǒng)計(jì)直方圖;
(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測(cè)試,每5人一組進(jìn)行.在隨機(jī)分組時(shí),小紅、小花兩名女生被分到同一個(gè)小組,請(qǐng)用列表法或畫(huà)樹(shù)狀圖求出她倆在抽道次時(shí)抽在相鄰兩道的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)為2的正方形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)D是邊OA的中點(diǎn),連接CD,點(diǎn)E在第一象限,且DE⊥DC,DE=DC.以直線AB為對(duì)稱軸的拋物線過(guò)C,E兩點(diǎn).

(1)求拋物線的解析式;
(2)點(diǎn)P從點(diǎn)C出發(fā),沿射線CB每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PF⊥CD于點(diǎn)F,當(dāng)t為何值時(shí),以點(diǎn)P,F(xiàn),D為頂點(diǎn)的三角形與△COD相似?
(3)點(diǎn)M為直線AB上一動(dòng)點(diǎn),點(diǎn)N為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)M,N,使得以點(diǎn)M,N,D,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AB=18,cosB= ,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E處,則線段AE的長(zhǎng)為(
A.6
B.7
C.8
D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案