⊙O1與⊙O2的半徑分別為4cm和5cm,若O1O2=10cm,則兩圓的位置關系是


  1. A.
    外離
  2. B.
    外切
  3. C.
    相交
  4. D.
    內(nèi)切
A
分析:根據(jù)數(shù)量關系來判斷兩圓的位置關系.設兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內(nèi)切,則d=R-r;內(nèi)含,則d<R-r.
解答:∵5+4=9<10,
∴兩圓外離.
故選A.
點評:本題主要考查兩圓的位置關系與數(shù)量之間的聯(lián)系.根據(jù)兩圓的圓心距和半徑的大小關系作出判斷即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O1與⊙O2的公共弦,O1在⊙O2上,BD,O1C分別是⊙O1與⊙O2的直徑,CA與BD精英家教網(wǎng)的延長線交于E點,AB與O1C相交于M點.
(1)求證:EA是⊙O1的切線;
(2)連接AD,求證:AD∥O1C;
(3)若DE=1,設⊙O1與⊙O2的半徑分別為r,R,且
r
R
=
1
2
,求r的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、已知⊙O1與⊙O2的半徑r1、r2分別是方程x2-6x+8=0的兩實根,若⊙O1與⊙O2的圓心距d=5,則⊙O1與⊙O2的位置關系
相交

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1與⊙O2的半徑分別為7和5,且⊙O1與⊙O2相切,則O1O2等于
2或12
2或12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•畢節(jié)地區(qū))已知⊙O1與⊙O2的半徑分別是a,b,且a、b滿足|a-2|+
3-b
=0
,圓心距O1O2=5,則兩圓的位置關系是
外切
外切

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

⊙O1與⊙O2的半徑分別為2和5,當O1O2=2.5時,兩圓的位置關系是
內(nèi)含
內(nèi)含

查看答案和解析>>

同步練習冊答案