如圖,已知△ABC中,BD、CE分別是∠ABC、∠ACB的平分線,BD、CE交于點O,∠A=70°.
(1)若∠ACB=40°,求∠BOC的度數(shù);
(2)當(dāng)∠ACB的大小改變時,∠BOC的大小是否發(fā)生變化?為什么?請寫出證明過程.
(1)∵在△ABC中,∠A=70°,∠ACB=40°,
∴∠ABC=180°-∠A-∠ACB=70°,
∵BD、CE分別是∠ABC、∠ACB的平分線,
∴∠OBC=
1
2
∠ABC=35°,∠OCB=
1
2
∠ACB=20°,
∴∠BOC=180°-∠OBC-∠OCB=125°;

(2)∠BOC的大小不發(fā)生變化.
∵BD、CE分別是∠ABC、∠ACB的平分線,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠BOC=180°-∠OBC-∠OCB,
=180°-
1
2
(∠ABC+∠ACB),
=180°-
1
2
(180°-∠A),
=90°+
1
2
∠A=125°,
∴∠BOC的大小只與∠A的大小相關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,AD平分∠BAC且交BC于點D,∠B=40°,∠CAD=30°,則∠ADC的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC中,AB=AC,BD平分∠ABC,交AC于D.若∠ABD=36°,則∠BDC=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知∠B=35°,∠D=43°,AM、CM分別平分∠BAD和∠BCD.寫出求∠M的代數(shù)式,并計算出∠M的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AD是高,BE是角平分線,AD、BE交于點F,∠C=30°,∠BFD=70°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,△ABC中,AE⊥BC于E,AD是△ABC的角平分線,若∠ACB=40°,∠BAE=30°,則∠EAD=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,BD、CD分別是∠ABC和∠ACB的角平分線,BD、CD相交于點D,求證:∠D=90°+
1
2
∠A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知△ABC,(1)如圖1,若P點是∠ABC和∠ACB的角平分線的交點,則∠P=90°+
1
2
∠A;
(2)如圖2,若P點是∠ABC和外角∠ACE的角平分線的交點,則∠P=90°-∠A;
(3)如圖3,若P點是外角∠CBF和∠BCE的角平分線的交點,則∠P=90°-
1
2
∠A.
上述說法正確的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習(xí)冊答案