【題目】婁底市某樓盤準(zhǔn)備以每平方米5000元的均價對外銷售,由于國務(wù)院有關(guān)房地產(chǎn)的新政策出臺后,購房者持幣觀望.為了加快資金周轉(zhuǎn),房地產(chǎn)開發(fā)商對價格經(jīng)過兩次下調(diào)后,決定以每平方米4050元的均價開盤銷售.
(1)求平均每次下調(diào)的百分率;
(2)某人準(zhǔn)備以開盤均價購買一套150平方米的房子.開發(fā)商還給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,送三年物業(yè)管理費(fèi).物業(yè)管理費(fèi)為每平方米每月1.5元.請問哪種方案更優(yōu)惠?
【答案】(1)平均每次降價的百分率為10%;(2)選方案①更優(yōu)惠.
【解析】
(1)根據(jù)公式列出關(guān)系等式求解即可.
(2)按照兩種優(yōu)惠方案,分別計算出優(yōu)惠后的實(shí)際房款,再進(jìn)行比較即可.
解:(1)設(shè)平均每次降價的百分率是x,依題意得
5000(1-x)2= 4050
解得:x1=10%,x2=(不合題意,舍去)
答:平均每次降價的百分率為10%.
(2)方案①的房款是:4050×150×0.98=595350(元)
方案②的房款是:4050×150-1.5×150×12×3=599400(元)
∵595350<599400
∴選方案①更優(yōu)惠.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=6,若點(diǎn)E,F分別在AB,CD上,且BE=2AE,DF=2FC,G,H分別是AC的三等分點(diǎn),則四邊形EHFG的面積為( )
A. 1B. C. 2D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=20cm,BC=15cm,動點(diǎn)P從點(diǎn)A出發(fā),以每秒4cm的速度沿AB方向運(yùn)動,到達(dá)點(diǎn)B時停止運(yùn)動.過點(diǎn)P作AB的垂線交斜邊AC于點(diǎn)E,將△APE繞點(diǎn)P順時針旋轉(zhuǎn)90°得到△DPF.設(shè)點(diǎn)P在邊AB上運(yùn)動的時間為t(秒).
(1)當(dāng)點(diǎn)F與點(diǎn)B重合時,求t的值;
(2)當(dāng)△DPF與△ABC重疊部分的圖形為四邊形時,設(shè)此四邊形的面積為S,求S與t的函數(shù)關(guān)系式;
(3)若點(diǎn)M是DF的中點(diǎn),當(dāng)點(diǎn)M恰好在Rt△ABC的內(nèi)角角平分線上時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行于x軸的直線AC分別交拋物線與于B、C兩點(diǎn),過點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DE∥AC,交y2于點(diǎn)E,則DE:BC=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:不論k取什么實(shí)數(shù)值,這個方程總有實(shí)數(shù)根;
(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個方程的兩個根,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,的余切值為2,,點(diǎn)D是線段上的一動點(diǎn)(點(diǎn)D不與點(diǎn)A、B重合),以點(diǎn)D為頂點(diǎn)的正方形的另兩個頂點(diǎn)E、F都在射線上,且點(diǎn)F在點(diǎn)E的右側(cè),聯(lián)結(jié),并延長,交射線于點(diǎn)P.
(1)點(diǎn)D在運(yùn)動時,下列的線段和角中,________是始終保持不變的量(填序號);
①;②;③;④;⑤;⑥;
(2)設(shè)正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關(guān)系式,并寫出定義域;
(3)如果與相似,但面積不相等,求此時正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A(﹣4,0),B(﹣1,3),以OA、OB為邊作OACB,經(jīng)過A點(diǎn)的一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于點(diǎn)C.
(1)求一次函數(shù)y=k1x+b的解析式;
(2)請根據(jù)圖象直接寫出在第二象限內(nèi),當(dāng)k1x+b>時,自變量x的取值范圍;
(3)將OACB向上平移幾個單位長度,使點(diǎn)A落在反比例函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC 中,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn)90°后,得到△AFB.設(shè)BE=a,DC=b,那么AB=_____.(用含a、b的式子表示AB)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com