【題目】如圖A(﹣4,0),B(﹣1,3),以OA、OB為邊作OACB,經(jīng)過(guò)A點(diǎn)的一次函數(shù)yk1x+b與反比例函數(shù)y的圖象交于點(diǎn)C

(1)求一次函數(shù)yk1x+b的解析式;

(2)請(qǐng)根據(jù)圖象直接寫(xiě)出在第二象限內(nèi),當(dāng)k1x+b時(shí),自變量x的取值范圍;

(3)將OACB向上平移幾個(gè)單位長(zhǎng)度,使點(diǎn)A落在反比例函數(shù)的圖象上.

【答案】(1)y=﹣3x﹣12;(2)x<﹣5;(3).

【解析】

(1)由A(-4,0),B(-1,3),以OA、OB為邊作平行四邊形OACB,可求得點(diǎn)C的坐標(biāo),然后利用待定系數(shù)法求得一次函數(shù)y=k1x+b的解析式;

(2)觀察圖象即可求得在第二象限內(nèi),當(dāng)k1x+b>時(shí),自變量x的取值范圍;

(3)首先利用待定系數(shù)法求得反比例函數(shù)解析式,進(jìn)一步求得當(dāng)x=-4時(shí),反比例函數(shù)上的點(diǎn)的坐標(biāo),繼而可求得將平行四邊形OACB向上平移幾個(gè)單位長(zhǎng)度,使點(diǎn)B落在反比例函數(shù)的圖象上.

(1)在OACB中,A(-4,0),B(-1,3),

BC=OA=4,

C(-5,3),

∵直線y=k1x+b的經(jīng)過(guò)點(diǎn)A(-4,0),C(-5,3),

,解得,

y=-3x-12;

(2)當(dāng)x<-5時(shí),k1x+b>;

(3)∵反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C(-5,3),

3=,解得k2=-15,

y=

當(dāng)x=-4時(shí),y=,

∴當(dāng)OACB向上平移個(gè)單位,使點(diǎn)A落在反比例函數(shù)的圖象上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)兩點(diǎn)A(﹣3,0),B0,3),且其對(duì)稱(chēng)軸為直線x=﹣1

1)求此拋物線的解析式;

2)若點(diǎn)P是拋物線上點(diǎn)A與點(diǎn)B之間的動(dòng)點(diǎn)(不包括點(diǎn)A,點(diǎn)B),求PAB的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】婁底市某樓盤(pán)準(zhǔn)備以每平方米5000元的均價(jià)對(duì)外銷(xiāo)售,由于國(guó)務(wù)院有關(guān)房地產(chǎn)的新政策出臺(tái)后,購(gòu)房者持幣觀望.為了加快資金周轉(zhuǎn),房地產(chǎn)開(kāi)發(fā)商對(duì)價(jià)格經(jīng)過(guò)兩次下調(diào)后,決定以每平方米4050元的均價(jià)開(kāi)盤(pán)銷(xiāo)售.

(1)求平均每次下調(diào)的百分率;

(2)某人準(zhǔn)備以開(kāi)盤(pán)均價(jià)購(gòu)買(mǎi)一套150平方米的房子.開(kāi)發(fā)商還給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷(xiāo)售;②不打折,送三年物業(yè)管理費(fèi).物業(yè)管理費(fèi)為每平方米每月1.5元.請(qǐng)問(wèn)哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+3軸、軸分別相交于點(diǎn)A、B,并與拋物線的對(duì)稱(chēng)軸交于點(diǎn),拋物線的頂點(diǎn)是點(diǎn)

(1)求kb的值;

(2)點(diǎn)G軸上一點(diǎn),且以點(diǎn)、C、為頂點(diǎn)的三角形與相似,求點(diǎn)G的坐標(biāo);

(3)在拋物線上是否存在點(diǎn)E:它關(guān)于直線AB的對(duì)稱(chēng)點(diǎn)F恰好在y軸上.如果存在,直接寫(xiě)出點(diǎn)E的坐標(biāo),如果不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】地鐵10號(hào)線某站點(diǎn)出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點(diǎn)端6米的處,用1.5米的測(cè)角儀測(cè)得電梯終端處的仰角為14°,求電梯的坡度與長(zhǎng)度.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明學(xué)習(xí)電學(xué)知識(shí)后,用四個(gè)開(kāi)關(guān)按鍵(每個(gè)開(kāi)關(guān)按鍵閉合的可能性相等)、一個(gè)電源和一個(gè)燈泡設(shè)計(jì)了一個(gè)電路圖

(1)若小明設(shè)計(jì)的電路圖如圖1(四個(gè)開(kāi)關(guān)按鍵都處于打開(kāi)狀態(tài))如圖所示,求任意閉合一個(gè)開(kāi)關(guān)按鍵,燈泡能發(fā)光的概率;

(2)若小明設(shè)計(jì)的電路圖如圖2(四個(gè)開(kāi)關(guān)按鍵都處于打開(kāi)狀態(tài))如圖所示,求同時(shí)時(shí)閉合其中的兩個(gè)開(kāi)關(guān)按鍵,燈泡能發(fā)光的概率.(用列表或樹(shù)狀圖法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,弦,

1)求證:是等邊三角形.

2)若點(diǎn)的中點(diǎn),連接,過(guò)點(diǎn),垂足為,若,求線段的長(zhǎng);

3)若的半徑為4,點(diǎn)是弦的中點(diǎn),點(diǎn)是直線上的任意一點(diǎn),將點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得點(diǎn),求線段的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在梯形ABCD中,P是線段BC上一點(diǎn),以P為圓心,PA為半徑的與射線AD的另一個(gè)交點(diǎn)為Q,射線PQ與射線CD相交于點(diǎn)E,設(shè).

1)求證:;

2)如果點(diǎn)Q在線段AD上(與點(diǎn)AD不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出定義域;

3)如果相似,求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知Aa,4),B(﹣4,b是一次函數(shù)與反比例函數(shù)圖象的兩個(gè)交點(diǎn).

1)若a1,求反比例函數(shù)的解析式及b的值;

2)在(1)的條件下,根據(jù)圖象直接回答:當(dāng)x取何值時(shí),反比例函數(shù)大于一次函數(shù)的值?

3)若ab4,求一次函數(shù)的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案