如圖,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,BG=cm,則EF+CF的長(zhǎng)為     cm。
5

分析:∵AF是∠BAD的平分線,∴∠BAF=∠FAD。
ABCD中,AB∥DC,∴∠FAD =∠AEB!唷螧AF=∠AEB。
∴△BAE是等腰三角形,即BE=AB=6cm。
同理可證△CFE也是等腰三角形,且△BAE∽△CFE。
∵BC= AD=9cm,∴CE=CF=3cm!唷鰾AE和△CFE的相似比是2:1。
∵BG⊥AE, BG=cm,∴由勾股定理得EG=2cm!郃E=4cm!郋F=2cm。
∴EF+CF=5cm。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四邊形ABCD是平行四邊形,P、Q是對(duì)角線BD上的兩個(gè)點(diǎn),且AP∥QC.求證:BP=DQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等邊三角形ABC中,BC=6,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為

(1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF
(2)填空:
①當(dāng)     s時(shí),四邊形ACFE是菱形;
②當(dāng)     s時(shí),以A,F(xiàn),C,E為頂點(diǎn)的四邊形是直角梯形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,在正方形ABCD中,P是對(duì)角線AC上的一點(diǎn),點(diǎn)E在BC的延長(zhǎng)線上,且PE=PB.

(1)求證:△BCP≌△DCP;
(2)求證:∠DPE=∠ABC;
(3)把正方形ABCD改為菱形,其它條件不變(如圖②),若∠ABC=58°,則∠DPE=   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

矩形的兩鄰邊長(zhǎng)的差為2,對(duì)角線長(zhǎng)為4,則矩形的面積為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四邊形中,,,已知四邊形的周長(zhǎng)為32,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知E是菱形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80º,那么∠CDE的度數(shù)為(     )
A.20ºB.25ºC.30ºD.35º

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD的對(duì)角線AC是菱形AEFC的一邊,則∠FAB等于 _________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

圖①是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.

(1)圖②中陰影部分的正方形的邊長(zhǎng)是 _________;
(2)請(qǐng)用兩種不同的方法求圖2中陰影部分的面積:
方法1: _________ ;
方法2: _________。
(3)觀察圖②,請(qǐng)你寫(xiě)出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 _________;
(4)根據(jù)(3)中的等量關(guān)系解決如下問(wèn)題:若m﹣n=﹣5,mn=3,則(m+n)2的值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案