如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A,且頂點(diǎn)M坐標(biāo)為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個(gè)單位,所得拋物線與x軸交于C、D兩點(diǎn),與原拋物線交于點(diǎn)P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當(dāng)m=2時(shí),點(diǎn)Q為平移后的拋物線的一動(dòng)點(diǎn),是否存在這樣的⊙Q,使得⊙Q與兩坐標(biāo)軸都相切?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)利用頂點(diǎn)式解析式設(shè)出拋物線解析式,然后把原點(diǎn)坐標(biāo)代入進(jìn)行計(jì)算即可得解;
(2)根據(jù)平移規(guī)律,先寫出平移后的解析式的頂點(diǎn)坐標(biāo),然后寫出平移后的拋物線解析式,與原拋物線解析式聯(lián)立求解即可得到點(diǎn)P的坐標(biāo),根據(jù)拋物線的對稱性求出OA的長度,然后根據(jù)平移的性質(zhì)得到CD的長度,最后分①0<m<2時(shí),點(diǎn)P在第一象限,②m>2時(shí),點(diǎn)P在第四象限,分別利用三角形的面積公式列式整理即可得解;
(3)假設(shè)存在點(diǎn)Q,根據(jù)拋物線的解析式設(shè)出點(diǎn)Q的坐標(biāo),然后根據(jù)點(diǎn)Q到x軸與y軸的距離相等解方程即可.
解答:解:(1)∵拋物線頂點(diǎn)坐標(biāo)為(1,2),
∴設(shè)拋物線解析式為y=a(x-1)2+2,
又∵拋物線經(jīng)過原點(diǎn),
∴a(0-1)2+2=0,
解得a=-2,
∴拋物線的解析式為y=-2(x-1)2+2;

(2)拋物線向右平移m個(gè)單位,則頂點(diǎn)坐標(biāo)為(1+m,2),
∴平移后的拋物線解析式為y=-2(x-1-m)2+2,
與原拋物線解析式聯(lián)立得,,
解得
又∵原拋物線的頂點(diǎn)坐標(biāo)為(1,2),
∴點(diǎn)A、O關(guān)于直線x=1對稱,
∴點(diǎn)A的坐標(biāo)為(2,0),
∴AO=2,
∴CD=AO=2,
①0<m<2時(shí),點(diǎn)P在第一象限,
S=×2×(-m2+2)=-m2+2,
②m>2時(shí),點(diǎn)P在第四象限,
S=×2×[-(-m2+2)]=m2-2;
綜上所述,S關(guān)于m的關(guān)系式為S=;

(3)根據(jù)(2),當(dāng)m=2時(shí),平移后的拋物線解析式為y=-2(x-1-2)2+2=-2(x-3)2+2=-2x2+12x-16,
假設(shè)存在⊙Q,使得⊙Q與兩坐標(biāo)軸都相切,設(shè)點(diǎn)Q的坐標(biāo)為(x,-2x2+12x-16),
則x=|-2x2+12x-16|,
∴x=-2x2+12x-16①或x=-(-2x2+12x-16)②,
整理①得,2x2-11x+16=0,
△=112-4×2×16=121-128=-7<0,
方程無解,
整理②得,2x2-13x+16=0,
解得x===,
∴當(dāng)x=時(shí),y=,
當(dāng)x=時(shí),y=,
∴點(diǎn)Q的坐標(biāo)為(,)或().
點(diǎn)評:本題是對二次函數(shù)的綜合考查,待定系數(shù)法求函數(shù)解析式,兩函數(shù)圖象交點(diǎn)的求解方法,三角形的面積,以及直線與圓相切,則圓心到直線的距離等于半徑的利用,綜合性較強(qiáng),難度較大,注意求解時(shí)需要分情況討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)A,它的對稱軸x=-2與x軸交于點(diǎn)C,直線y=-精英家教網(wǎng)2x+1經(jīng)過拋物線上一點(diǎn)B(2,m),且與y軸.直線x=-2分別交于點(diǎn)D、E.
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)①判斷△CBE的形狀,并說明理由;②判斷CD與BE的位置關(guān)系;
(3)若P(x,y)是該拋物線上的一個(gè)動(dòng)點(diǎn),是否存在這樣的點(diǎn)P,使得PB=PE?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)A,它的對稱軸x=2與x軸交于點(diǎn)C,直線y=-2x-1經(jīng)過拋物線上一點(diǎn)B(-2,m),且與y軸、直線x=2分別交于點(diǎn)D、E,
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過坐標(biāo)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A,且頂點(diǎn)M坐標(biāo)為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個(gè)單位,所得拋物線與x軸交于C、D兩點(diǎn),與原拋物線交于點(diǎn)P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當(dāng)m=2時(shí),點(diǎn)Q為平移后的拋物線的一動(dòng)點(diǎn),是否存在這樣的⊙Q,使得⊙Q與兩坐標(biāo)軸都相切?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上的另一點(diǎn)E,頂點(diǎn)為M(2,4),矩形ABCD的頂點(diǎn)A與O重合,AD,AB分別在x,y軸上,且AD=2,AB=3.
(1)求該拋物線對應(yīng)的函數(shù)解析式;
(2)現(xiàn)將矩形ABCD以每秒1個(gè)單位長度的速度從左圖所示位置沿x軸的正方向勻速平行移動(dòng);同時(shí)AB上一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速運(yùn)動(dòng),設(shè)它們的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤3),直線AB與拋物線的交點(diǎn)為N,設(shè)多邊形PNCD的面積為S,試探究S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案