【題目】已知關(guān)于的一元二次方程.
(1)求證:該方程有兩個(gè)實(shí)數(shù)根;
(2)若該方程的兩個(gè)實(shí)數(shù)根、滿足,求的值.
【答案】(1)該方程有兩個(gè)的實(shí)數(shù)根;(2)m=±4.
【解析】試題分析:(1)求出△=b2﹣4ac的值,判定△≥0即可;
(2)根據(jù)根與系數(shù)的關(guān)系可得x1+x2=4,再結(jié)合條件2x1+x2=2可得x1=﹣2,然后再把x的值代入方程可得4+8﹣m2+4=0,再解即可.
試題解析:(1)證明:∵△=(﹣4)2﹣4×1×(﹣m2+4)=16+4m2﹣16=4m2≥0,∴該方程有兩個(gè)實(shí)數(shù)根;
(2)∵方程的兩個(gè)實(shí)數(shù)根x1、x2,∴x1+x2=4.∵2x1+x2=2,∴x1+4=2,x1=﹣2,把x1=﹣2代入x2﹣4x﹣m2+4=0得:4+8﹣m2+4=0,m=±4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】右圖是老北京城一些地點(diǎn)的分布示意圖.在圖中,分別以正東、正北方向?yàn)?/span>軸、軸的正方向建立平面直角坐標(biāo)系,有如下四個(gè)結(jié)論:
①當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(0,0),表示廣安門的點(diǎn)的坐標(biāo)為(,)時(shí),表示左安門的點(diǎn)的坐標(biāo)為(5,);
②當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(0,0),表示廣安門的點(diǎn)的坐標(biāo)為(,)時(shí),表示左安門的點(diǎn)的坐標(biāo)為(10,);
③當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(1,1),表示廣安門的點(diǎn)的坐標(biāo)為(,)時(shí),表示左安門的點(diǎn)的坐標(biāo)為(,);
④當(dāng)表示天安門的點(diǎn)的坐標(biāo)為(,),表示廣安門的點(diǎn)的坐標(biāo)為(,)時(shí),表示左安門的點(diǎn)的坐標(biāo)為(,).
上述結(jié)論中,所有正確結(jié)論的序號是
A. ①②③ B. ②③④ C. ①④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的點(diǎn)M,N表示的數(shù)分別是m,n,點(diǎn)M在表示0,1的兩點(diǎn)(不包括這兩點(diǎn))之間移動(dòng),點(diǎn)N在表示-1,-2的兩點(diǎn)(不包括這兩點(diǎn))之間移動(dòng),則下列判斷正確的是( )
A.的值一定小于0
B.的值一定小于2
C.的值可能比2000大
D.的值不可能比2000大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個(gè)內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+4的圖象與x軸和y軸分別相交于A、B兩點(diǎn).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AO上以每秒3個(gè)單位長度的速度向點(diǎn)O作勻速運(yùn)動(dòng),到達(dá)點(diǎn)O停止運(yùn)動(dòng),點(diǎn)A關(guān)于點(diǎn)P的對稱點(diǎn)為點(diǎn)Q,以線段PQ為邊向上作正方形PQMN.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=秒時(shí),點(diǎn)Q的坐標(biāo)是 ;
(2)在運(yùn)動(dòng)過程中,設(shè)正方形PQMN與△AOB重疊部分的面積為S,求S與t的函數(shù)表達(dá)式;
(3)若正方形PQMN對角線的交點(diǎn)為T,請直接寫出在運(yùn)動(dòng)過程中OT+PT的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
如圖,在平面直角坐標(biāo)系中,點(diǎn)D的坐標(biāo)是(﹣3,1),點(diǎn)A的坐標(biāo)是(4,3).
(1)點(diǎn)B和點(diǎn)C的坐標(biāo)分別是________、________.
(2)將△ABC平移后使點(diǎn)C與點(diǎn)D重合,點(diǎn)A、B分別與點(diǎn)E、F重合,畫出△DEF.并直接寫出E點(diǎn)的坐標(biāo) ,F點(diǎn)的坐標(biāo) .
(3)若AB上的點(diǎn)M坐標(biāo)為(x,y),則平移后的對應(yīng)點(diǎn)M′的坐標(biāo)為___ _____.
(4)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角板的直角頂點(diǎn)按如圖方式疊放在一起,友情提示:,,.
(1)①若,則的度數(shù)為__________;
②若,則的度數(shù)為__________.
(2)由(1)猜想與的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)且點(diǎn)在直線的上方時(shí),當(dāng)這兩塊角尺有一組邊互相平行時(shí),請直接寫出角度所有可能的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形 ABCD 中,動(dòng)點(diǎn) E 從點(diǎn) A 出發(fā),沿 AB→BC 方向運(yùn)動(dòng),當(dāng)點(diǎn) E 到達(dá)點(diǎn) C 時(shí) 停止運(yùn)動(dòng).過點(diǎn) E 作 FE⊥AE,交 CD 于 F 點(diǎn),設(shè)點(diǎn) E 運(yùn)動(dòng)路程為 x,FC=y,圖②表示 y與 x 的函數(shù)關(guān)系的大致圖像,則矩形 ABCD 的面積是( )
A. B. 5 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,然后解答后面的問題.
我們知道方程2x+3y=12有無數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得,(x、y為正整數(shù))∴則有0<x<6.又為正整數(shù),則為正整數(shù).
由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入.
∴2x+3y=12的正整數(shù)解為
問題:
(1)請你寫出方程2x+y=5的一組正整數(shù)解:______;
(2)若為自然數(shù),則滿足條件的x值有______個(gè);
A、2B、3C、4D、5
(3)七年級某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com